Thoroughbred® ScriptIV™

Developer Guide

THOROUGHBRED

eoffearne culernalional, cac

Version 8.6.0

285 Davidson Ave., Suite 302 * Somerset, NJ 08873-4153
Telephone: 732-560-1377 » Outside NJ 800-524-0430
Fax: 732-560-1594

Internet address: http://www.tbred.com

Published by:

Thoroughbred Software International, Inc.
285 Davidson Ave., Suite 302

Somerset, New Jersey 08873-4153

Copyright © 2007 by Thoroughbred Software International, Inc.

All rights reserved. No part of the contents of this document
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Document Number: SD8.6.0M101

The Thoroughbred logo, Swash logo, and Solution-IV Accounting logo, THOROUGHBRED, IDOL, OPEN WORKSHOP, and
VIP VISUAL IMAGE PRESENTATION are registered trademarks of Thoroughbred Software International, Inc.

Thoroughbred Basic, Thoroughbred Environment, OPENworkshop, T-WEB, IDOL-1V, Inquire-IV, Dictionary-1V,
Script-1V, Report-1V, Query-IV, Source-IV, TS Network DataServer, TS ODBC DataServer, TS ODBC R/W
DataServer, TS ORACLE DataServer, TS DataServer for MS SQL Server, TS XML DataServer, VIP (Visual Image
Presentation), VIP for Dictionary-1V, VIP, GWW, Gateway for Windows™, TS ChartServer, TS ReportServer, TS
WebServer, TbredComm, WorkStation Manager, Solution-IV, Solution-IV Reprographics, Solution-IV ezRepro,
TS/Xpress, and DataSafeGuard are trademarks of Thoroughbred Software International, Inc.

MS-DOS, Xenix, Windows, Microsoft Windows 2000, NT, and XP, Windows 2003 Server and MS SQL Server are
trademarks of Microsoft Corp. IBM, IBM PC, 0OS/2, PS/2, and PC-DOS are trademarks of International Business
Machines Corp.

DEC, OPEN VMS, and ULTRIX are trademarks of Digital Equipment Corp.

UNIX is a trademark licensed exclusively through X/Open Company

LTD.Novell is a registered trademark of Novell, Inc.

Oracle is a registered trademark of Oracle Systems Corporation

InstallShield is a registered trademark of Stirling Technologies, Inc.

Other names, products and services mentioned are the trademarks or registered trademarks of their respective vendors or
organizations.

INTRODUCTION

Thoroughbred IDOL-IV is an application development environment that contains a set of integrated tools
designed to remove much of the burden from programming. Thoroughbred Script-IV is a high-level
programming language included in the IDOL-IV product set.

Operating System Support: UNIX, Linux, OpenVMS, and Windows

For specific information, please contact your Thoroughbred Sales Representative.

What is a Fourth Generation Language?

Fourth Generation Languages (4GLs) are often described as high-productivity languages, since this best
describes their overall goal. These languages deliver this degree of improvement by providing a powerful
set of development tools of which the programming language is an integral part.

A 4GL is not a language in the classical sense of programming languages. Instead, it is a system of
integrated tools designed to be used for developing interactive, on-line, multi-user business applications.
These development tools include:

e Database Management System

e Data Dictionary

e Screen Developer

e Menu Management System

e Report Generator

e 4GL Programming Language

1

Copyright © 2007 Thoroughbred Software International, Inc.

4GL Development Tools

4GL Features

Applications
Thoroughbred Solution-IV Database Management
System
Data Dictionary
Screen Developer
Thoroughbred IDOL-IV Menu Management system
Dictionary-IV
Script-IV «—t .
AGE——— Report-1V - 4GL Programming Language
QUery-lV \
Source-IV
OPENworkshop Report Generator

3GL Foundation
Thoroughbred Basic

A 4GL enables rapid development of code and performs much of the general housekeeping associated
with programming in a lower generation language. Thoroughbred IDOL-IV meets the definition of a
Fourth Generation Language.

IDOL-IV

Thoroughbred IDOL-IV is a family of products that together provide a complete 4GL (fourth generation
language) environment for the development of business application software.

Overview

IDOL-IV separates application logic from application data. The process executes 4GL Script-IV code and
3GL code (using Dictionary-IV API’s) and makes reference to Dictionary-IV for all data items, data file
definitions, screen designs, and user messages. These definitions are external to the application logic.

Components

Dictionary-IV

Is the system dictionary. It is a DBMS (Database Management System), which provides the foundation
for the Thoroughbred IDOL-IV family of products. It also contains the public programs known as
Dictionary-IV APIs.

Script-IV
Provides the 4GL procedural language constructs required for developers to build applications quickly. It
uses structured, concise English-like commands that allow you to create applications using less code.

Report-1V

Is a comprehensive report generator. It runs with Dictionary-IV, which defines the type and location of
data items. Report-IV combines data from multiple files, file structures, file systems, and operating
systems. It can access applications across multiple machines.

2

Copyright © 2007 Thoroughbred Software International, Inc.

Query-1V

Allows the software developer to place a query management system in the hands of the end-user. It is
based on the industry standard SQL (Structured Query Language). Queries can be stored and retrieved
later and can be transferred to a Report-IV format. Query-IV runs with Dictionary-IV, which defines the
type and location of data items. The output may also be directed to Thoroughbred Gateway for Windows
for further processing by any workstation-based application under Microsoft Windows.

Source-IV
Is a source code management system. Its editor has many advantages over the native Script-IV editor,
including:

e An elegant interface with advanced editing functions.
e Source-code management capabilities.
e Edit histories that enable you to track and undo changes.

OPENworkshop

OPENworkshop is an object-oriented development environment. Object-oriented programming focuses
on data objects and the operations that you perform on them. There is no longer a need to copy existing
processes.

With OPENworkshop, Dictionary-IV applications are immediately applicable to object-oriented
technology. The benefits of this technology are:

¢ Increased productivity in development.
e Increased productivity in maintenance.

There is not a main program. The information content and structure is implemented as Dictionary-1V
Formats. The operations are implemented as Methods, which are procedural code written in Script-IV or
Thoroughbred Basic and associated with the data object.

The CONNECT functions provide the interconnections between the data and the functional options
available to the user.

e CONNECT Directive that allows for "connections" to be made from one object to another. A
CONNECT may be made directly. For example: a Menu can CONNECT VIEW to display a defined
View. It can also be made through a METHOD, which contains procedural code that modifies the
behavior of the CONNECT. A CONNECT can be invoked at pre- or post- processing stages of data
entry, or when defined function keys are used.

e METHOD Thoroughbred Basic or Script-IV code that can be associated with OPENworkshop
objects. Typically, Methods will be associated with pre- or post-processing of data in Screens or
Views, or may be invoked as I/O Triggers associated with a Link.

3

Copyright © 2007 Thoroughbred Software International, Inc.

Overview of Thoroughbred Script-IV

Script-1V is a fourth-generation programming language that provides a set of structured commands. The
language was designed to be concise but comprehensive. Because the commands are based on English
language constructs, most software developers find them easy to learn and easy to remember.

The language enables developers to write task-oriented code. A script tells the system what to do but it
does not necessarily specify how to do it. Script-IV determines how to manage most of the details.

For example, suppose that you want to write a script that will close all open purchase orders with a
balance of less than 500 dollars. The following Script-IV code fragment accomplishes that task:

PRINT SCREEN POCHECKS
CHANGE PODATA USING
KEY RANGE FROM FIRST TO LAST
SELECT WHEN STATUS = "OPEN" AND
PURCHASE-AMOUNT <500
PROCESSING IS CLOSE-PORDERS

The sample code above uses system resources defined in Dictionary-IV. Script-IV can access the
Dictionary-IV database and system dictionary, which contain the following system resources:

Format defines the format of a logical group of data or the physical record layout of a data file.

View defines a way of specifying and displaying multiple data records.

Help defines context-sensitive, on-line help for menus, data entry, and messages.

Screen defines a screen that is displayed on the terminal. The sample code fragment above uses the
POCHECKS screen.

Link specifies a sort, text, or data file and links it to a format, screen, or view. The sample code

fragment above uses the PODATA link.
Menu provides a list of items to select.
Messages contain common messages that can be used by scripts.

These resources enable developers to write terse code and enable Script-IV to manage the implicit details,
such as how information will be displayed. Because Script-IV was designed as a flexible language,
developers can override Dictionary-IV defaults and specify explicit sets of instructions. For more
information on the resources listed above see to the Dictionary-IV Developer Guide.

Script-IV works in concert with other IDOL-IV components. Developers can use Source-IV to write,
compile, and edit scripts. A script can execute reports created under Report-IV and execute queries
created under Query-IV.

Script-IV was designed to provide alternatives to third-generation programming techniques, but it also
provides an interface to the Thoroughbred Basic third generation language. Developers can migrate
existing Thoroughbred Basic applications to Script-IV or use scripts to integrate existing Thoroughbred
Basic programs with Script-IV.

4

Copyright © 2007 Thoroughbred Software International, Inc.

Script-IV was designed to help developers create, maintain, and enhance applications:
* Script-IV enables developers to produce readable, self-documenting code.

e Script-IV is dictionary-driven. Resources can be defined once in a common dictionary and shared

among applications. If a developer needs to change a resource definition, the change applies to every

script that uses the definition.
* Script-IV supports a multiple spoken-language interface.

* Script-IV can be run with Thoroughbred VIP and Gateway for Windows for display and full use
under the Microsoft Windows graphical user interface.

Software Conventions

The following software conventions are common to Script-IV and other Thoroughbred products.

Screen Navigation

If you are running VIP (Visual Image Presentation) for Dictionary-IV, you can use your mouse to click or

double-click on your selections.
If you are not running VIP, you can move through your character-based application by using arrow keys,
tab keys, function keys, and character keys (0-9 and A-Z).

Function Keys

Function keys available in all Thoroughbred products:

F4 ends an operation or exits a function

F6 displays on-line help in a window.

Menus

Thoroughbred Script-1V is controlled through a series of menus, which provide an easy way to review
and select options. For more information on how to select options from menus see the Dictionary-IV
Reference Manual.

Printing

For information on system printers, please refer to Volume III of the Dictionary-IV Reference Manual.

How These Manuals are Organized

The following subsections provide an introduction to Script-IV printed documentation.

5

Copyright © 2007 Thoroughbred Software International, Inc.

Script-1V Developer Guide

The Script-IV Developer Guide can serve as an introduction to IDOL-IV concepts and a user guide for
programmers learning Script-IV. This manual assumes that you have some experience with a
programming language such as Thoroughbred Basic or experience with a fourth-generation programming
language. Familiarity with Dictionary-IV concepts is helpful but not assumed.

The Script-IV Developer Guide contains the following information:

Introduction

Creating Scripts

Script-1V Tips and Techniques

Compiling Scripts

Sample Scripts

Glossary

Script-IV Language Reference

This chapter summarizes the contents of the manual, describes
concepts and conventions common to IDOL-IV products, and
provides information on further services available from
Thoroughbred Software International.

This chapter describes the tools you can use to build scripts, how to
structure a script, the various types of scripts, and how scripts are
managed in memory.

This chapter contains information on advanced data handling
techniques.

This chapter describes how to compile scripts. It includes
information on how to manage compilation errors and a list of error
messages.

This chapter contains a set of sample scripts that illustrate how you
can use Script-IV to solve common programming problems.

This chapter includes definitions of terms used in this manual. These
terms are common to IDOL-IV and Script-IV.

The Script-IV Language Reference is a reference manual for Script-IV programmers. It contains the

following information:

Introduction

Script-1V Language

Thoroughbred Basic Elements

Glossary

This chapter describes the scope of the information contained in this
volume.

This chapter contains a complete description of each Script-IV
command and variable.

This chapter contains information about Thoroughbred Basic
directives, functions, and variables.

This chapter includes definitions of terms used in this manual. These
terms are common to IDOL-IV and Script-IV.

6

Copyright © 2007 Thoroughbred Software International, Inc.

Documentation Conventions

The following documentation conventions are common to Script-IV printed documentation.

Keyboard Designation

Keys on the keyboard are identified in bold type. For example: Press the Enter key to make a selection or
press the F4 key to exit.

Prompts and Messages

Software prompts and messages are shown in bold type. For example:

RETURN-Select, F4-END

Save Changes (Y/N)

Responses

Information you must type appears in bold type. It should be typed exactly as shown. For example:
Type John Smith and press the Enter key.

Options you may select also appear in bold type.

Notational Symbols

CAPITALS Words in boldface CAPITALS mark the beginning of a command.
CAPITALS Words in CAPITAL letters are keywords and must be entered as
shown.

CAPITALS Words in italic CAPITALS are optional for script readability and have no
effect on command syntax.

[optional] Elements contained in [square brackets] are optional syntactic elements.

lower case Elements shown in lower case letters identify parameters that need further
information or items to be supplied by the user.

lower-case Words in underscored lower case letters indicate a more detailed explanation

of a parameter.
An ellipsis indicates that the preceding element can be repeated.
The vertical bar indicates that the user has a choice between two or more

elements. At least one of the entries must be chosen unless the complete set
of elements is enclosed in square brackets.

7

Copyright © 2007 Thoroughbred Software International, Inc.

"value" A value enclosed in quotation marks indicates a string value.
Punctuation and symbols ~ With the exception of the above symbols, all punctuation or relational
symbols shown within a command format, such as commas, parentheses,

semicolons, equal signs, and so on, are part of the syntax and must be
included where shown.

Common Syntax Elements

Some commands in this manual refer to common syntax elements, which are explained in this section.
Expressions

An expression is two or more elements, consisting of constants, data names, variables, or functions,

which interact with operators to form a new value. An expression can be used in conditions.

Operators in Expressions

+ addition or string concatenation
- subtraction

* multiplication

/ division

Aor ** exponentiation

() grouping

Logical Conditions

A logical condition is two or more values, consisting of constants, data names, variables, functions, or
expressions that interact with relational or logical operators to form either a true or false result.

Relational Operators in Conditions

= equal to

> greater than

< less than

>=or => greater than or equal to
<=or =< less than or equal to
<>or>< not equal to

() grouping

8

Copyright © 2007 Thoroughbred Software International, Inc.

Special Operators in Conditions

=ALL string-value
Used to determine whether a string of any length contains repetitions of just one character. The
first character of the string-value is used in the comparison. For example, IF STRING_VALUES$
=ALL "A" is true if STRINGS$_VALUE contains only "A" characters.

LIKE "partial-value"
Partial equality. The LIKE operator can specify a string value that contains wildcards, which can
match more than one character. The LIKE operator automatically pads its values to the correct
length.
LIKE wildcards
* matches any string of characters (0 or more).

? matches any single character.

[A-Z] matches a range for a single character.

[AGCF] matches a single character in a list.

[wildcard] matches the specified wildcard character.

The [and | characters in wildcards are required. The * and ? wildcards perform case-insensitive

comparisons.

Logical Operators in Conditions

AND logical AND (both true)
OR logical OR (either true)

Masks (Output Formats)

A mask specifies the format in which numeric output is displayed or printed. Masks enable you to specify
the same format regardless of the size of the number. They also enable you to output financial symbols
and characters, for example, $5,632.04-, and to retain insignificant zeros, for example, output 1 as 1.00.
The syntax is:

number-element:"mask"

number-element is a numeric data element, formula, or multiple occurrence.

mask is one or more mask characters.

9

Copyright © 2007 Thoroughbred Software International, Inc.

Each digit in the numeric value that is output must match up with a mask character. Mask
characters determine the output. You can specify more mask characters than there are
digits in the numeric value.

An insignificant zero is a leading or trailing zero. A floating character is output at the
rightmost leading zero.

Valid mask characters are:

0

#

CR

DR

27?2

Outputs a digit from 0 to 9. When the digit is an insignificant zero, it outputs a 0.

Outputs a digit from 0 to 9. When the digit is an insignificant zero, it outputs a
space.

Outputs a decimal point between digits. If the number is 0 and 0 is not used in the
mask, it outputs a space.

Outputs a comma between digits if the digit to the left is a significant digit; it can
only be used to the left of the decimal point.

Outputs a dollar sign.

Outputs an asterisk when the digit is a leading zero.

Outputs a minus sign if the number is negative, or a space if the number is
positive. This mask character can be placed at the left or right of the mask. If
placed to the left, it is a floating character.

Outputs a plus sign if the number is positive, a minus sign if the number is
negative, or a space if the number is zero. This mask character can be placed at

the left or right of the mask. If placed to the left, it is a floating character.

Outputs a CR (to indicate a credit) if the number is negative, or 2 spaces if the
number is positive. This mask character must be placed at the right of the mask.

Outputs DR (to indicate a debit) if the number is positive, a CR if the number is
negative, or a space if the number is 0. This mask character must be placed at the

right of the mask.

Outputs a left parenthesis if the number is negative, or a space if the number is 0
or positive. This mask character must be placed at the left of the mask.

Outputs a right parenthesis if the number is negative, or a space if the number is
0 or positive. This mask character must be placed at the right of the mask.

Outputs a space.

Any characters other than the mask characters are placed in the specified
position.

10

Copyright © 2007 Thoroughbred Software International, Inc.

Thoroughbred Product Line

IDOL-1V

Dictionary-1V

Script-1V

Report-1V

Query-1V

Source-1V

Thoroughbred Basic

Dictionary-IV API Services

Thoroughbred Solution-1V

Thoroughbred VIP

A fully integrated 4GL application development environment. IDOL-IV
features a set of comprehensive 4GL programming productivity tools for
the application developer.

A relational database management system (RDBMS) that serves as a
repository of information. It includes a data dictionary that enables
developers to define screens, formats, links, data validation rules, and
many other forms of vital application data. Once defined in
Dictionary-1V, these resources can be reused.

A high-performance, structured-code 4GL language enabling quick
application development. Script-IV enables developers to quickly
develop prototypes.

A report writer that takes advantage of the power of Dictionary-IV. This
tool helps the developer create complex reports across multiple files and
file types. With flexible formatting commands the reports are well
structured and easy to maintain.

An interactive query manager that enables end-users to create, run, and
maintain their own sets of queries.

A source code management system that includes a context-sensitive
editor and compilation facilities. The editor enables the developer to
create and review code quickly and easily, minimizing errors and
development time.

Source-IV was formerly called Thoroughbred Sourceror.

A 3GL programming language that provides presentation management,
Thoroughbred Basic Windows, color, full screen editors, and access to
multiple databases with foreign data types.

Provides developers using Thoroughbred Business Basic with access to
the Dictionary-IV data dictionary. By using API Services developers can
increase productivity, reduce maintenance costs, and migrate to 4GL
programming interfaces.

The Dictionary-IV API Services were formerly called Thoroughbred
Basic Public Programming Services.

A multi-user, multi-company accounting package that provides solutions
for general ledger, accounts payable, accounts receivable, fixed assets,
inventory control, order processing, purchase ordering, and payroll.

A family of software development products that runs under Microsoft
Windows. The family includes VIP for Dictionary-IV and Gateway for
Windows.

11

Copyright © 2007 Thoroughbred Software International, Inc.

Services Provided by TSI

Thoroughbred Software International provides on-line documentation, printed documentation, support,
and training.

On-line Documentation

From any IDOL-IV menu, help is available by typing /8H and pressing the Enter key.

Context-sensitive on-line help is available by pressing the F6 key. In many cases, a summary of
information will be displayed. For more detailed information, press the F6 key again.

Support

Thoroughbred provides customer support by telephone, e-mail, fax. For more information please contact
your sales representative.

Training Classes

Thoroughbred provides IDOL-IV training classes. These classes are held at the corporate headquarters as
well as at regional locations. For more information and a schedule of upcoming classes, please contact

your sales representative.

Thoroughbred provides information and services on the Internet. Please visit Thoroughbred on the World
Wide Web at http://www.tbred.com.

For More Information

* about creating applications please refer to the Thoroughbred Dictionary-IV Getting Started Guide.

e about using an IDOL-IV product please refer to the individual product reference manual. The
Query-1V, Report-1V, Script-IV, and Source-IV Reference Manuals are available from Thoroughbred
Software.

* about Thoroughbred Basic please refer to the Thoroughbred Basic Reference Manual.

» about Thoroughbred Basic Utilities please refer to the Thoroughbred Basic Utilities Manual.

12

Copyright © 2007 Thoroughbred Software International, Inc.

CREATING SCRIPTS

Source-1V is a source code management system. Its editor has many advantages over the native Script-IV
editor, including:

* An elegant interface with advanced editing functions

* Source-code management capabilities

* [Edit histories that enable you to track and undo changes

If you use Source-IV to edit scripts, you must compile the scripts from Source-IV. A script compiled
under Source-IV must be maintained in Source-IV. If you use the Script-IV script editor to edit a script,

you must compile the script from the IDOL-IV Development Menu or the script editor.

If you plan to use Source-IV to edit scripts, you can skip the following section and go to the section on
How to Structure a Script. For more information on Source-IV see the Source-IV Manual.

If you are not sure whether Source-1V is installed on your system, please contact your system
administrator or the person who installed Script-1V.

The Script Editor

To enter the script editor, log on to IDOL-IV. The IDOL-IV Control Menu will be displayed:

‘ﬁ.Func‘ciDnKeys File Edit Terminal ‘Window _|E|£|

Co0 E 11/11/97
UTHEHU18 Thoroughbred IDOL-IV Control Henu 85:38 PH

UTILITY SELECTIODNS SYSTEM SELECTIDNS

Release Hotes IDOL-IV Development Henu
System Administration IDOL-IV Utilities Menu
Operator Information IDOL-IV Supplemental Utilities
Set System Date/Time BASIC Utilities Menu

Securit Terminal Logoff

[Selection: [N

13

Copyright © 2007 Thoroughbred Software International, Inc.

Type the number that corresponds to the IDOL-IV Development Menu and press the Enter key. The
IDOL-IV Development Menu will be displayed:

‘ﬁ.Func‘ciDnKeys File Edit Terminal ‘Window _|E|£|

coo 3 11711797
IDMENU1 Thoroughbred IDOL-IU Development Henu 85 :56 PH

Script—IU/Report-IU UTILITIES

6 Generate Compile List

7 Compile from Generated List
8 Compiling Error Report
C

P

Dictionary-IV MAINTENANCE
DEFINITIODHN

Compile Scripts
Print Reports

DATABASE MAINTENANCE

S Screen (CONMECT SCREEHN)
U Uiew {CONNECT UIEW)

SYSTEM SELECTIOHS
9 IDOL-IV Utilities HMenu
18 Terminal Logoff

[Selection: [N

Type the number that corresponds to the Edit Definition function and press the Enter key. A pop-up
menu will be displayed:

‘ﬁ. Function Keys File Edit Terminal Window - |E|£|
11/11/97
IDMENUA1 Thoroughbred IDOL-IU Development Henu 85 :56 PH

fg-Formats

2-3creens

3-Uiews OU INTENANCE

4-Links LIBRARY 6 Generate Compile List

5-Menus 0OU 7 Compile from Generated List

6-Hessages 8 Compiling Error Report

7-Help C Compile Scripts

8-Global P Print Reports

2-Scripts

R-Reports

Library

Screens {Mon-Window) [ECT SCREEH)

Uiews IDOL-IV ECT UIEW) 9 IDOL-IU Utilities Henu

Menus IDOL-IV 18 Terminal Logoff

Query

Source-IU

System

Note: The pop-up menu displayed above is available from any IDOL-IV menu by pressing the F1 key.

14

Copyright © 2007 Thoroughbred Software International, Inc.

Type the number that corresponds to Scripts and press the Enter key. You will be placed in the Script
Definition screen:

'ﬁ.Func’ciDnKeys File Edit Terminal Window _|E‘|i|
Add/Change {F1-Switch Haintenance Hode F2Z-Lookup}

1-Fmt 2-Scrn 3-Uiew &4-Link 5-Henu 6-Hsqg 8-Ghl R-Rpt
SCRIPT Hame: Desc:

Password: Chng:
Type: <1-Primary 2-Continuation 3-Overlay
4-FH PrefPost 5-Copy 6-Public
F1-Split F2-Join F3/F7-Cpl F4—End F6-Hlp F8-Sr/Rp F?-ExpSn F18-Goto F11-Cmt

The Script Definition screen provides the following features:

1. The maintenance mode is displayed on the first line.

2. The definition facilities are displayed on the second line.

3. The components of the script definition are displayed on lines three through six.

4. The function keys active in the script editing area are displayed on the seventh line.
5. The script editing area occupies the remainder of the screen.

These features are described in the following subsections.

Maintenance mode

The maintenance mode is displayed on the first line. For more information on maintenance modes see the
subsection on Components of Script Definition.

Definition Facilities

This selector message enables you to switch to other definition facilities. For more information on these

definition facilities see the Dictionary-IV
Developer Guide.

15

Copyright © 2007 Thoroughbred Software International, Inc.

Components of Script Definition

SCRIPT Name: Type from 3 to 8 alphanumeric characters for the name of the script and press the

Desc:

Password:

Chng:
Compiled:

Type:

Enter key. This field is mandatory.

Characters one and two are the library name. Characters three through eight are the
script name. If the library does not exist, the system allows you to create it here.

See Volume I of the Dictionary-IV Reference Manual, which provides a file naming
convention you may implement.

The following function keys are available from the SCRIPT Name: field:

F1 Switches maintenance mode:

Add/Change mode enables you to create a new script or edit an existing
script.

Delete mode enables you to delete an existing script.

Rename mode enables you to rename an existing script.

Copy mode enables you to copy a script.

F2 Displays a lookup of existing script names. For more information see the
subsection on Script Definition Lookup.

F4 Exits. Press once to go to the Definition Facilities, which are discussed below.
Press again to return to the IDOL-IV Development Menu.

F6 Displays on-line help. For more information see the subsection on Getting Help.

Type up to 40 alphanumeric characters for the description of this script and press the Enter
key. This field is optional.

Type from 1 to 3 alphanumeric characters and press the Enter key. The system will ask you
to verify the password. This field is optional.

Displays the date of the last change to the script definition. The system generates this field.
Displays the date when the script was last compiled. The system generates this field.
The following values are available:

1 - Primary Script

2 - Continuation Script

3 - Overlay Script

P - API Pre/Post Processing Script

4 - File Maintenance Pre/Post Processing Script
5 - Copy Script

6 - Public Script

U - Utility Script

16

Copyright © 2007 Thoroughbred Software International, Inc.

Type the number or letter that corresponds to the script type and press the Enter key.
This field is mandatory.

For more information on script types see the Different Types of Scripts section in
this chapter.

Function Keys Active in the Script Editor

The following function keys are available in the script editor:

F1

F2

F3

F4

Fé

F7

F8

F9

F10

F11

Split a line.

Join lines.

Compile and save a script.
Exit the script.

Help key, which opens the on-line help system. For more information, see the subsection on
Getting Help.

Compile and save a script.

Search and replace. Press twice to reuse a previous search.
Expand screen. Press again to reset the screen to its original size.
Goto a procedure.

Enter a comment line.

Other Editing Keys Active in the Script Editor

The following keys are available in the script editor:

Moving on a Line

Left Arrow Move left one character.
Right Arrow Move right one character.

Back Tab Move left one tab stop. The Script-IV editor has preset tabs.

Tab Move right one tab stop. The Script-IV editor has preset tabs.
Moving Between Lines
Up Arrow Move up one line. At the bottom of a window, move up half a window.

Down Arrow Move down one line. At the top of a window, move down half a window.

17

Copyright © 2007 Thoroughbred Software International, Inc.

Page Up Move up one window.
Page Down Move down one window.

Return/Enter Move cursor to the beginning of the following line.

Home Moves the cursor according to how many times the key is pressed:
1. Move to the left side of a line.
2. Move to the top of the window.
3. Move to the beginning of text.
4. Move to the end of text.

Deleting Characters
Backspace Delete the character to the left of the cursor.
Delete Delete the current character.
Line Clear Delete characters to the right.
Line Delete Delete the entire line.
Inserting Characters
Insert Pushes characters to the right.

Line Insert Inserts a blank line.

Getting Help

At any point where Script-IV is waiting for you to enter something, you can press the Fé6 key and get
instructions. In addition to help at menus and prompts, Script-IV provides a help network within the script
editor itself. You can use the on-line help in the script editor as a reference when creating scripts. In many
cases there are different levels of help you can access by pressing the Fé6 key again.

18

Copyright © 2007 Thoroughbred Software International, Inc.

For example, if you are defining a script, you can press the F6 key at the SCRIPT Name: field to learn
more on how to name a script. The following screen will be displayed:

'ﬁ.Func’ciDnKeys File Edit Terminal Window _|E‘|i|
Add/Change {F1-Switch Haintenance Hode F2Z-Lookup}

1-Fmt 2-Scrn 3-Uiew &4-Link 5-Henu 6-Hsqg 8-Ghl R-Rpt
SCRIPT Hame Desc:

Password Chng:
Type: <1-Primary 2-Continuation 3-Overlay
4-FH PrefPost 5-Copy 6-Public
F1-Split F2-Join F3/F7-Cpl F4—End F6-Hlp F8-Sr/Rp F?-ExpSn F18-Goto F11-Cmt

Definition Hame

The Definition Hame uniquely identifies each definition. The 1length of
the npame can range from 3 to 8 characters. Ualid characters Ffor
definition names include: A thru 2, a thru z, B8 thru 9 and the dash {-)}
and underscore (_).

Other functions available at the Definition Hame prompt include:
<F1> Change Definition maintenance modes. The modes are Add/Change,
Delete, Rename and Copy.
<F2> Display a lookup of the available definitions.

A help window displays information on valid values for script names. Many help windows enable you to
retrieve more detailed information on a subject by pressing the F6 key again. In this case, pressing the F6
key will display the following screen:

'ﬁ.FunctiDnKeys File Edit Terminal ‘Window _|E|i|
Add/Change (F1-Switch HMaintenance Hode F2-Lookup})

5-Henu 6-HMsqg
DTG Move help up or

down one half window.

EEDERINENDIN) Move help up or

down one full window.

8-Gbl R-Rpt

2-Continuation 3-Overlay
efPost S5-Copy 6-Public
End FG6-Hlp F8-Sr/Rp F?-ExpSn F18-Goto

F11-Cmt

I Go to top/bottom of help.

Edit help.
Move help.
Print screen identifies each definition. The 1length of
End help. AT to 8 characters. Valid characters for
Special Functions. hru 2, a thru z, 8 thru 9 and the dash (-)

Expand/Compress help.

il Exit from all help levels.

@l Print hard copy. the Definition Hame prompt include:

intenance modes. The modes are Add/Change,
Delete, Rename and Copy.

<F2> Display a lookup of the available definitions.

19

Copyright © 2007 Thoroughbred Software International, Inc.

A second help window is displayed. It contains information on the keys you can use in the help system.
To return to the previous help window, you can press the F4 key. To return to the SCRIPT Name: field,
press the F4 key again.

Script Definition Lookup

To lookup existing scripts, you can press the F2 key on the SCRIPT Name field. A screen similar to the
following screen will be displayed:

'ﬁ. Function Keys File Edit Terminal ‘Window - |E|i|
Add/Change (F1-Switch HMaintenance Hode F2-Lookup})
1-Fmt 2-Scrn 3-Uiew 4-Link 5-Henu #A-Hsg 8-Ghl R-Rpt

SCRIPT Hame: Desc:
Password: Chng: i
Type: <1-Primary 2-Continuation 3-Overlay

4-FH PrefPost 5-Copy 6-Public
F1-5plit F2-Join F3/F7-Cpl F4-End F6-Hlp F8-Sr/Rp F?-ExpSn F18-Goto F11-Cmt
SrptHame Descyiption---——"—"—"7"-"---—""--------—— T LstChgDt LstCmpDt LstCmpTm-

LGSKEL18 Primary Script Skeleton 5 12/85/95
LGSKEL28 Continuation Script Skeleton 5 12/85/95
LGSKEL38 Overlay Script Skeleton 5 12/85/95
LGSKELAB FH prefpost script skeleton 5 12/85/95
LGSKELSE8 Public Script Skeleton 5 12/85/95
LGSKELC2? 00P'S Common Escape Processing Skeleto 5 88/13/92
AGSKELC2 Common Error Processing Skeleton 5 B8/13/92
LGSKELCH Include DIM HMessage Array 5 B88/16/95
LGSKELDE Dimension]18% and Set Channel Count S a9/12/9,
AGSKELEP Common Error Processing Skeleton 5 82/82/96
AGSKELER Common Error Processing Skeleton 5 B8/14/95
LGSKELES Common Escape Processing Skeleton 5 88/14/95
LGSKELF Format Includes 5 18/13/9%
LGSKELO8 Common Open/Close Skeleton 5 83/20/97
AGSKELP Public Program Public Skeleton 5 12/85/95

Each entry displays the script name, a description of the script, the number that specifies the type of
script, the date the script was last modified, the date the script was last compiled, and the time the script
was last compiled. You can use the Page Down, Page Up, or arrow keys to display information on all the
scripts in the list.

To select and edit a script you can use the Page Down, Page Up, up arrow, or down arrow keys to
move to the name of the script you plan to modify and press the Enter key. You will be returned to the
Script Definition screen where you can edit the selected script.

If you decide to exit from the script list, press the F4 key twice.

How to Structure a Script

Before you enter a script into Source-1V or the script editor you must consider the enforced structure and
the optional structure of the script. Enforced structure is the set of requirements a script must meet before
it can be compiled and executed. Optional structure is the set of techniques you can use to make scripts
more readable and easier to maintain.

20

Copyright © 2007 Thoroughbred Software International, Inc.

Enforced Structure
Enforced structure includes the following requirements:
* identifying the beginning of a script.

* identifying the procedures and commands in a script. Data declarations, procedure names, and the
.LONGVAR, .SHORTVAR, and .PREC commands must begin in the leftmost column. All other
Script-IV commands must begin at least one tab stop from the left margin. Command elements must
be separated by at least one space.

Scripts are divided into the Data Environment Section, which is optional, and the Procedures Section,
which is required for most scripts. Only the Type 5 (copy) script, discussed in Subsection 2.3.6, does not
require a Procedures Section. The Data Environment Section and the Procedures Section are described
below.

DATA ENVIRONMENT SECTION

This section is located at the beginning of the script. If you plan to use dictionary definitions, such as
formats, screens, views, or links, you must declare them in this section. The type of script you plan to
write and the order of the declarations of dictionary definitions help to create the data environment for a
script. For more information on script types, see the section on Different Types of Scripts in this chapter.

Data Declarations Each data declaration, except for DN, consists of a data declaration
command followed by the name of a dictionary definition or 4GL
dataname. The command must begin in the leftmost column of the
screen and the definition name must be indented at least one tab stop
on the same line. For example:

VN 4SCUST, 4SSLSRP, 4SINVEN

LN 4SSALDT

SN 4STOPSC1l, 4STOPSC2, 4SBOTSCR
DN INPUT-FLAG (1), VIEW -FLAG (1),
DN TEXT-FLAG (1)

DN TAX-RATE (2.0)

VN, LN, SN, and DN are data declaration commands. Each data
declaration, except for the DN declarations, specifies at least one
dictionary definition or 4GL dataname. More than one declaration is
allowed on a line if the definition names are separated by commas or
spaces.

The order of data declarations is important. When a script is
compiled, the Script-IV compiler builds a data name table. Data
names are placed in the table as they are encountered. In the example
above, the 4SCUST view defined in the VN statement is associated
with the 4SCUST format and the 4SSLSRP view is associated with
the 4SSLSRP format. When a script that uses these data declarations
is compiled, the data names defined in the 4SCUST format precede
the data names defined in the 4SSLSRP format.

21

Copyright © 2007 Thoroughbred Software International, Inc.

There is a possibility that duplicate data names will be placed in the
table. When a script specifies a data name, the compiler searches for
the first occurrence of the data name in the table. Using the example
above, the 4SCUST format and the 4SSLSRP format both contain
the SALES-REP-CODE data element. A script that specifies
SALES-REP-CODE accesses the value defined for
SALES-REP-CODE in the 4SCUST format because 4SCUST is
declared before 4SSLSRP.

To access a different occurrence of the data name, the data name
must be qualified by preceding it with a format name and a period.
Using the example above, to access the value of the
SALES-REP-CODE data element contained in the 4SSLSRP
format, the script must specify the data name as
4SSLSRP.SALES-REP-CODE. However, to access the value of
the SALES-REP-CODE data element contained in the 4SCUST
format, the script can specify SALES-REP-CODE or
4SCUST.SALES-REP-CODE.

For more information on data declaration commands see the
Script-IV Language Reference. For more information on dictionary
definitions see the Dictionary-IV Reference Manual.

Compile-Time Definitions
Compile-time definitions contain data that is resolved when the

script is compiled. They include the definition names specified in
data declarations and script names used in INCLUDE commands:

Definition Data Declaration Command
Data Name DN
Format Name FN
Link Alias LA
Link Name LN
Screen Name SN
View Name VN
Definition Command

Script Name INCLUDE

When specified in Script-IV commands, compile-time definitions are
not enclosed by quotation marks. They cannot be used as parameters
or passed to a command in a data name or variable. They must be
fully specified, for example, OPEN SCREEN CUSSCRNI.

22

Copyright © 2007 Thoroughbred Software International, Inc.

Data Names

Run-Time Definitions

Run-time definitions contain data that is resolved when the script is
executed. They include all program names, on-line help, message
dictionary definitions, and script names except when used in the
INCLUDE command:

Definition Command

Message Dictionary ~ All Applicable

On-Line Help All Applicable
Program Name All Applicable
Script Name All except INCLUDE

You do not have to declare these definitions before they are specified
in Script-IV commands. They can be used in string constants,
variables, data names, or expressions. These definitions can be
soft-coded in your script, for example, OPEN MESSAGES
"ARMSGS" or OPEN MESSAGES MESSAGE-LIST.

Data names can be defined to hold string, integer, or decimal data.
Additional attributes can be specified. Data names only hold a single
type of data. For example, if CUS-NAME is defined, it is handled as
a single element. If it needs to be handled as a first and last name,
you must define it as two parts, for example, CUS-NAME-FIRST
and CUS-NAME-LAST.

Data names can be used in expressions, functions, assignments, and
calculations. A data name is limited to a length of 20 characters.
Valid characters are uppercase and lowercase alphabetic characters,
numerals, the hyphen character, and the underscore character. Data
names must not contain a period or any special characters that may
cause a conflict in Script-IV syntax. Data names must not conflict
with any procedure names, declared format, link, screen, or view
names, or keywords. If a data name has the same name as a system
variable, the data name takes precedence.

Because data names are treated as single elements in scripts,
substring operations cannot be performed on data names. However,
the value in a data name can be moved to a variable on which string
operations can be performed. Data names and variables can be used
interchangeably in Script-IV syntax, except when specifically stated
otherwise.

The four types of data names that can be used in Script-IV are local

format data names, global format data names, link alias data names,
and local variables.

23

Copyright © 2007 Thoroughbred Software International, Inc.

Local Format Data Names

Local format data names defined in a format can be used in a script if
the format has been declared by an FN command. These local format
data names are dictionary-based because the format definition
resides in the IDOL-IV dictionary.

When used in a script, these data names can, and in some cases must,
be qualified by the format name. The name of the format must
precede the data name delimited by a period, for example:
ARFORMAT.CUS-NUMBER. This is necessary if your script uses
data names that match in multiple formats.

For more information on local format data names see the description
of the FN command in the Script-IV Language Reference.

Global Format Data Names

Global format data names are also defined in a format that resides in
the IDOL-IV dictionary. The global format name always consists of
a # (pound sign) followed by three to eight characters.

The global format is not declared in the Data Environment section,
but there are a number of ways to include global format data names
in a script. For more information on global format data names see the
section on Formats and data names in the Thoroughbred Basic
Reference Manual.

The data in a global format is separate and independent from the data
in a local format.

Link Alias Data Names

For each link alias declared in the script, a duplicate format with an
additional set of matching data names is available to the script. To be
accessed, these data names must be qualified by the link-name-alias
rather than the format name. For more information on link alias data
names see the description of the LA command in the Script-IV
Language Reference.

Local Variables

Local variables can be defined in a script using the DN data
declaration command. These local variables do not reside in the
dictionary but are handled much like a local format data name. They
are not qualified by a format name or other name, and therefore must
be unique among any other local variables or data names used in a
format. For more information on the DN data declaration command
see the description of the DN command in the Script-IV Language
Reference.

24

Copyright © 2007 Thoroughbred Software International, Inc.

Physical and Logical Formats

During file maintenance, formats are used to access data in files. The
format is linked to a physical data file through the link definition.
This is a physical format, which describes a record and the data
elements in the record along with element characteristics, defaults,
valid values, and related data entry restrictions.

In scripts, a format can be used independently of a data file or link.
This is a logical format, which can function like a data name or a
variable. It can be assigned a value, its value can be printed or passed
to another script, and it can generally be manipulated as an item of
data in several commands.

The ability to manipulate a logical format provides greater freedom
in script design. The following two examples each describe a

different way to collect two data records and write them to two files.

Formats for Examples 1 and 2:

Format ONE (for screen ONE and LINK-ONE) :

CUS-CODE
CUS-NAME
CUS-ADDRESS
SLS-CODE

Format TWO (for screen TWO and LINK-TWO) :

SLS-CODE
SLS-NAME

Format ABC (for screen ABC; no link):

CUS-CODE
CUS-NAME
CUS-ADDRESS
SLS-CODE
SLS-NAME

The first example uses two independent screens and two physical
formats.

Example 1:

PRINT SCREEN ONE
INPUT SCREEN ONE
ADD LINK-ONE
PRINT SCREEN TWO
INPUT SCREEN TWO
ADD LINK-TWO

25

Copyright © 2007 Thoroughbred Software International, Inc.

Constants

Elastic Variables

Screen ONE is printed, then used to input data into format ONE. The
data in format ONE is added to the data file using LINK-ONE. The
same procedure is performed for screen TWO, format TWO, and
LINK-TWO. In this example, the two screens can be displayed and
manipulated independently of each other.

The second example accomplishes the same task as the first example
using one screen with one logical format and two physical formats.

Example 2:

PRINT SCREEN ABC
INPUT SCREEN ABC
LET ONE = ABC
ADD LINK-ONE
LET TWO = ABC
ADD LINK-TWO

Screen ABC is printed then used to input data into format ABC.
Format ABC contains data names from two different physical
formats: ONE and TWO. Format ONE is loaded with data in a
format assignment statement, and the data in format ONE is added to
the data file using LINK-ONE. Format TWO is loaded with data in a
format assignment statement, and the data in format TWO is added
to the data file using LINK-TWO. In this example, a single screen is
used to collect data.

Constants are data elements that do not change value during script
execution. Constants are also called literals because values such as
1.25 or "string" are literal values. There are two types of constants: .

* Numeric constants can be positive or negative numerals in
integer, fixed point, or floating-point format.

e String constants include ASCII characters delimited by quotes,
such as "ABC", or hexadecimal values delimited by dollar
signs, such as $414243§.

For more information on constant values see the Thoroughbred Basic
Reference Manual.

Elastic variables contain values that can change during execution.
Elastic variables can dynamically change length. They are not
declared in the data declaration area. Do not confuse local variables,
which are dictionary-based data names, with the elastic variables
described below..

26

Copyright © 2007 Thoroughbred Software International, Inc.

Elastic variables are not dictionary-based. They provide another way
of holding and manipulating data. Elastic variables do have the
requirements of the data name definitions described above, but
elastic variables do not promote data independence. They can be
used to manipulate strings, to create temporary work areas, and to
fulfill various formatting requirements.

Data names and elastic variable names can be used interchangeably
in Script-IV syntax, except when specifically stated otherwise.

The types of elastic variables that can be used in Script-IV are elastic
numeric variables and elastic string variables.

Elastic Numeric Variables

Elastic numeric variables contain numeric values. These values can
be integers, fixed-point numbers, or floating point numbers. You can
use the LET command to assign numeric values to the elastic
numeric variables you define.

For more information on how to define elastic numeric variables see
the Thoroughbred Basic Reference Manual. To establish control of
naming conventions for elastic variables please refer to the
descriptions of the LONGVAR and .SHORTVAR commands in
the Script-IV Language Reference. To specify how integer values are
rounded please refer to the descriptions of .PREC and PRECISION
in the Script-IV Language Reference.

Elastic String Variables

Elastic string variables contain string values. These values are
non-numeric values that can range up to 65000 bytes long. You can
use the LET command to assign string values to the elastic string
variables you define.

For more information on how to define elastic string variables see
the Thoroughbred Basic Reference Manual.

Restrictions on Elastic Variables

Under some circumstances you cannot define elastic variables with
certain names. This restriction applies to SINPUT Pre/Post
Processing scripts and File Maintenance Pre/Post Processing scripts.
For a list of restricted elastic variable names, please refer to on-line
documentation.

You cannot define a Script-IV reserved word or a Thoroughbred
Basic reserved word as an elastic variable name. For a list of
reserved words please refer to the Script-IV Language Reference.

27

Copyright © 2007 Thoroughbred Software International, Inc.

System Variables System variables are numeric or string variables that Script-IV
defines to help you manage certain types of tasks. In most cases,

these variables interact with a Script-IV command. .

Examples of Script-IV system variables include:

VARIABLE Interacts with
COLUMN INPUT SCREEN
ESCAPE ESCAPE-KEY
FIELD INPUT SCREEN
FILE-SUFFIX OPEN
LENGTH INPUT SCREEN
LINE INPUT SCREEN
MENU-PARMS Not Applicable
SYSTEM-DATE SET
SYSTEM-TIME SET
TERM-KEY INPUT MESSAGE
INPUT SCREEN
TERMINAL-DATE SET
TEXT-END READ

For more information on these system variables see the descriptions
in the Script-IV Language Reference.

PROCEDURES SECTION

The procedures section consists of at least one independent procedure that contains Script-IV commands.
Procedures are the main body of the script.

The first procedure in a script is the main procedure and controls all other procedures. When the main
procedure is completed, the script automatically terminates. If there are no commands in the main
procedure, the script will automatically terminate without processing further procedures.

Give some thought to the design and organization of script procedures. Long-term productivity can be
increased by spending time in the analysis and design phases of product development. Prior planning can
decrease development time, enhance script readability, and facilitate script maintenance.

A procedure consists of a procedure name followed by one or more script commands.
Procedure Names

The procedure name:

* identifies the body of commands as a unique procedure within
the script.

* must be different from all other procedure names in the script or
in any included script. The procedure name must not conflict
with any reserved words.

28

Copyright © 2007 Thoroughbred Software International, Inc.

Script-1V Commands

e must begin in the leftmost column of the screen and must appear
on a line by itself. However, comments preceded by !
(exclamation point) can follow the procedure name.

* can be from 1 through 64 characters long. It cannot contain space
characters. The first 20 characters must be unique.

* must not be broken or fall onto two lines when referred to by a
command.

* can consist of uppercase or lowercase characters, numerals, and
the - (hyphen) character.

Script-IV commands can be grouped into a procedure that performs a
task. Since the commands tell the system what to do rather than how
to do it, the procedure is self-documenting.

Commands perform operations on data elements such as constants
and variables, control input and output, and specify how scripts are
executed and processed. For example:

* To assign a value to a variable, you can use the LET or SET
command.

* To specify a branch in execution, you can use the
IF/THEN/ELSE/ENDIF command.

* To control file access, you can use the OPEN, LOCK,
UNLOCK, and CLOSE commands.

* To control I/O to disk, you can use the ADD, CHANGE,
DELETE, or READ command.

* To use Dictionary-IV definitions, you can use the INPUT
SCREEN, INPUT MESSAGE, PRINT HELP, PRINT
VIEW, or CONNECT commands.

Commands must be indented at least one tab stop from the first
column on the screen. Additional indention and line spacing can be
used for readability.

Commands are sensitive to spaces. Use a space to separate all
elements within a command such as the command, clauses, options,
parameters, data names, and so on. This is required for the compiler
to accept the commands and, if not used, may cause a syntax error.
The only exceptions to this are the () (parentheses) characters when
they are used for grouping. In this case, a space precedes but does
not follow a left parenthesis, and a space follows but does not
precede a right parenthesis.

29

Copyright © 2007 Thoroughbred Software International, Inc.

Optional Structure

Optional structure, or appearance, includes the following:

e command indention
* line spacing

* punctuation

Although optional structure does not affect script compilation and execution, it can have an impact on
readability and maintenance. Because optional structure provides flexibility, it is important to set
standards of consistency for your scripts.

The Script-IV language is a self-documenting language designed for readability and easy maintenance.
Command syntax is simple and descriptive. Software developers who prefer terse code can build readable
procedures. However, script readability can be enhanced by using the following options.

Command Placement

Comments

Optional Syntax Elements

Optional Punctuation

More than one command can be placed on one line of a script, but
this coding style can produce procedures that are hard to read.
Starting a Script-IV command on a new line helps produce readable
code.

Many Script-IV commands contain clauses. Placing each clause on a
new line enhances readability.

Comment or remark lines are not compiled. Any line that contains an
* (asterisk) in the leftmost column is treated as a comment line. You
can use comment lines as dividers to separate procedures or
segments within a procedure. For example:

Optional syntax elements do not affect command function; they
enhance readability. Three common optional elements are IS, ARE,
and PROCESS. For example, the following two clauses perform the
same function:

MISSING TOTALS-PROCEDURE

MISSING KEY PROCESS IS
TOTALS-PROCEDURE

The ; (semicolon) and . (period) can be used to mark the end of a
command. The script compiler ignores these punctuation marks.

30

Copyright © 2007 Thoroughbred Software International, Inc.

Optional Line Spacing

Optional Indention

Blank lines can be used to separate logical segments of your script.
You can separate procedures or groups of procedures from each
other, or separate one command from another. Blank lines are not
compiled. Because scripts are compressed before they are stored on
disk, blank lines do not require storage space.

You can indent commands and their subordinate clauses to highlight
the clauses and display processing hierarchy. If you develop and
follow your own standards for indenting, it can strengthen the
structure of your scripts.

Example 1
You can use indention for a command that requires many clauses,

and use a blank line to separate the command from the next
command:

CHANGE CUSFIL USING KEY CUS-NUMBER
BUSY PROCESS IS BUSY-MESSAGE

END PROCESS IS END-OF-FILE
PROCESSING IS UPDATE-CUS
TEXT "A"

WINDOW LINE IS 15
COLUMN IS O
CHARACTERS PER-LINE ARE 60
NUMBER LINES ARE 6

IF CUS-NUMBER > "T0000" THEN
PRINT SCREEN CUSSCRN1l CLEAR
DO LOCAL-CUSTOMERS
ELSE
DO COUNT-MAIL-ORDER-CUSTOMERS
IF COUNT1 > 1000 THEN
PRINT MESSAGE "N, 150"
IF MAIL-ORDER-FLAG = "y" THEN
DO BULK-MAIL
ENDIF
ENDIF
DO CLOSE-MAIL-ORDERS
ENDIF

31

Copyright © 2007 Thoroughbred Software International, Inc.

Example 2

The first part of this example demonstrates lack of structure and poor
readability:

IF SORT-NO = 0 THEN
CHANGE ATAPMSTR USING KEY NEXT
PROCESSING IS EDIT-RECORD;BUSY IS
BUSY-RECORD; END IS END-OF-MAIN-FILE
ELSE CHANGE ATAPMSTR USING KEY SORT
SORT-NO NEXT
PROCESSING IS EDIT-RECORD;BUSY IS
BUSY-RECORD;
END IS END-OF-MAIN-FILE

ENDIF

The second part of this example uses the same command and
demonstrates how optional structuring can increase readability:

IF SORT-NO = 0 THEN
CHANGE ATAPMSTR USING KEY NEXT
PROCESSING IS EDIT-RECORD
BUSY IS BUSY-RECORD
END IS END-OF-MAIN-FILE
ELSE
CHANGE ATAPMSTR USING KEY SORT SORT-NO
NEXT
PROCESSING IS EDIT-RECORD
BUSY IS BUSY-RECORD
END IS END-OF-MAIN-FILE
ENDIF

Different Types of Scripts

Y ou must specify the script type when you define the script. You can select one of several different types:
primary, continuation, overlay, API pre/post processing, file maintenance pre/post processing, copy,
public, and utility.

The type of script determines how the script is compiled. This affects the command used to start the
script, the script data environment, what happens when the script terminates, and other execution
characteristics.

In this chapter's description of script types, the following terms are used:

Script-1V Data Environment The sequence and type of declared data and open message
dictionaries that are shared by a script set. Declared data can include
links, screens, views, formats, and local data names but not elastic

variables or arrays.

3GL Data Environment Elastic variables and arrays.

32

Copyright © 2007 Thoroughbred Software International, Inc.

Parent Script A primary script that is a starting point for execution of a script set.
The parent script contains the initial data declarations that are
common to the script set.

Script Set A script or group of related scripts that share a common parent and
Script-1V data environment.

Executing Script A script that uses the RUN command to execute another script.

Type 1 - Primary Script

The primary script is used as a starting point for processing. You can execute this script from:

* Any IDOL-IV menu definition using the type "P".

* An IDOL-IV menu, using the /script-name command.

* Another script, using the RUN script-name command.

* A 3GL program or Thoroughbred Basic Console Mode, using the RUN program-name directive.
This script automatically clears the screen at the beginning of execution and initializes the Script-IV and
3GL data environments. It closes all files and clears all variables, replaces any other program in memory,
and automatically passes data to certain other script types. When it terminates, execution returns to the
last selected IDOL-IV menu.

Type 2 - Continuation Script

This script serves as the continuation of a primary script or another continuation script.

You can execute this script from a primary or continuation script using the RUN script-name command.
This script keeps all files open, retains the values contained in variables, replaces the current primary or
continuation script in memory, accepts data from a primary or continuation script, and passes data to
certain other script types. When it terminates, execution returns to the last selected IDOL-IV menu.

The Script-IV data environment is shared with the parent script and script set. It must be declared in the
continuation script using the same sequence and type of data as the parent script. You can create a copy
module containing the data declarations and use the INCLUDE command to incorporate them into any

script.

The 3GL data environment is shared with the parent script.

Type 3 - Overlay Script

This script serves as an overlay to a primary, continuation, or another overlay script. It is a specialized
type of continuation script that conserves memory and functions somewhat differently from a
continuation script.

33

Copyright © 2007 Thoroughbred Software International, Inc.

You can execute an overlay script from a primary, continuation, or overlay script using the RUN
OVERLAY script-name command. The overlay script accepts the entire 4GL environment from the
parent script and returns the environment to the parent script. This script operates in its own memory
segment. When it terminates, execution returns to the executing script at the command following the
RUN OVERLAY command.

The Script-IV data environment is shared with the parent script and script set. It must be declared in the
overlay script using the same sequence and type of data as the executing script. You can create a copy
module containing the data declarations and use the INCLUDE command to incorporate them into any
script.

This script provides an independent 3GL data environment, which can include variables and numeric
arrays, which is not affected by and does not affect the 3GL data in the executing script.

The RUN script-name command is not allowed in an overlay script. However, you can use the RUN
PUBLIC script-name and RUN OVERLAY script-name commands.

Only one ESCAPE-KEY procedure command can be specified in an overlay script.

Type P - API Pre/Post Processing Script

This script type can be executed before or after a field is entered in file maintenance. It is designed to be
executed from the SINPUT API, the CONNECT SCREEN command, or the CONNECT VIEW
command. The script name is specified in the pre-process or post-processing attribute of a data element in
a format definition.

This script is invoked from file maintenance. It cannot be invoked from another script or by the INPUT
SCREEN command.

As an example, you can use this script type to calculate sets of numbers before a user performs data entry
or use this script type to calculate sets of numbers after a user performs data entry.

When you specify the script name in the pre/post-processing attribute in the format definition, the
program execution indicator (exec-indicator) must be 0 (CALL). If you specify a value for string-value, it

will be contained in the VAVS variable, which is described below.

The script must contain the data declaration for the screen definition as the first line in the script. For
IDOL-IV database maintenance, you must use a custom screen definition rather than the default screen.

Following is a list of 3GL variables used by an API Pre/Post Processing Script:

VAVS contains the string value defined in the Pre/Post processing definition.
SPARMS|ALL] is the screen array.

FPARMS|ALL] is the format array.

FDS$ is the entire data record (before field edit).

178 is reserved for system use.

34

Copyright © 2007 Thoroughbred Software International, Inc.

Wi1$ contains the field entry, which contains the entered data.

SE is the field control value.

W$ is reserved for system use.

For more information on these variables see the on-line documentation under API Services, SINPUT,
Pre/Post Proc. For more information on the pre/post processing section of a format see the Formats
chapter of the Dictionary-IV Developer Guide

Although this script type was designed to be executed from the SINPUT API, the CONNECT SCREEN
command, or the CONNECT VIEW command, it can also be executed from single-record maintenance
(SRM) or multi-record maintenance (MRM). For information on a script type designed to be executed
from SRM or MRM, please refer to the following subsection.

Type 4 - File Maintenance Pre/Post Processing Script

This script type can be executed before or after a field is entered in file maintenance. It is designed to be
executed from single record maintenance (SRM) or multi-record maintenance (MRM). The script name is

specified in the pre-process or post-processing attribute of a data element in a format definition.

This script is invoked from file maintenance. It cannot be invoked from another script or by the INPUT
SCREEN command.

As an example, you can use this script type to calculate sets of numbers before a user performs data entry
or use this script type to calculate sets of numbers after a user performs data entry.

When you specify the script name in the pre/post-processing attribute in the format definition, the
program execution indicator (exec-indicator) must be 0 (CALL). If you specify a value for string-value, it

will be contained in the S8$ variable, which is described below.

The script must contain the data declaration for the screen definition as the first line in the script. For
IDOL-IV database maintenance, you must use a custom screen definition rather than the default screen.

Following is a list of 3GL variables used by a File Maintenance Script:
S88 contains the string value defined in the Pre/Post processing definition.
E1$ s reserved for system use.
A8$ s the screen attribute entry for the current data element:
1,1 Screen column (binary)
2,1 Screen line (binary)
3,1 Screen entry length (binary)
4,1 Fixed attribute entry number (binary)

V9 is the current screen attribute table entry number.

F3$ contains data name contents before input.

35

Copyright © 2007 Thoroughbred Software International, Inc.

F4$ contains data name contents after input. If you want to automatically generate the data field
contents before input, using preprocessing procedures sets the contents of this variable, and, when
returned to maintenance, the contents will automatically be displayed.

C is the Terminal Control Value (CTL).
S$ contains the data record read for File Lookup.

For more information on these variables see the on-line documentation from the pre-process or
post-processing attribute field of a data element in a format definition. For more information on the
pre/post processing section of a format see the Formats chapter of the Dictionary-IV Developer Guide.

Although this script type was designed to be executed from single-record maintenance or multi-record
maintenance, it can also be executed from the SINPUT API, the CONNECT SCREEN command, or the
CONNECT VIEW command. For information on a script type designed to be executed from the
S8INPUT API or the CONNECT commands, please refer to the preceding subsection on the API Pre/Post
Processing Script.

Type 5 - Copy Script

This script is not executed or compiled by itself. A copy script is a script fragment that can contain
common groups of directives, functions, or a data environment. Other scripts can use the INCLUDE
command to copy this information, which becomes part of that script at compile time. By placing
common code in one location, copy scripts help you avoid duplication and make application maintenance
easier.

Type 6 - Public Script

This script serves as an independent subroutine to a primary, continuation, overlay, or another public
script. Having an independent data environment, the public script does not belong to a script set or have a
parent script.

You can execute a public script from a primary, continuation, overlay, or public script using the RUN
PUBLIC script-name command. Public scripts do not automatically pass any data and operate with an
entirely independent data environment. A public script only knows what is explicitly passed to it and what
it declared within it. When it terminates, execution returns to the executing script at the command
following the RUN PUBLIC command.

This script provides an independent Script-IV data environment that is not affected by and does not affect
the data environment in the executing script, but values can be passed to and returned from a public script.

A public script must contain the ENTER PUBLIC command as the first command line in the script after
the data declaration. The 3GL data environment is initialized for a public script, except for the variables
received through the ENTER PUBLIC command.

The RUN script-name command is not allowed in a public script. However, you can use the RUN
PUBLIC script-name command.

Only one ESCAPE-KEY procedure command can be specified in a public script.

36

Copyright © 2007 Thoroughbred Software International, Inc.

Type U - Utility Script
This script is like a primary script except that it does not automatically clear the screen at the beginning of

execution and it does not initialize the Script-IV or 3GL data environments. When it terminates, execution
returns to the last selected IDOL-IV menu.

Script Execution Diagrams

The following pages contain diagrams and charts that illustrate how different types of scripts execute and
interact with one another, the data environment for some types of scripts, and how memory is used as
scripts execute.

The diagrams and charts are:

* Primary Script Execution

* Continuation Script Execution

* Overlay Script Execution

* Public Script Execution

* Script Type Execution and Memory Usage

37

Copyright © 2007 Thoroughbred Software International, Inc.

Primary Script Execution

IpoL-1v
MENU SELECTION

TYFE ‘P OF ‘¢

TERMINATE
COMMAMD RETURME
TO LasT SELECTED

IDOL-IV MEMU

PRIHARY

usIMG THE RUM
"EZCRIFT—HAME"
COMMAHD

CONTINUATION

usIMG THE RUM
"EZCRIFT—HAME"
COMMAHD

PROGRAH HODE

usIMG THE RUM
VPROGRAM—MAME"

CONSOLE HODE

uzIMG THE RUN
"PROGREM=HEHE"

4GL SCRIPTS

FRIMARY

usinGg THE RUM
"SCRIFT—M&ME"

PRINARY
SCRIPT

4GL SCRIPTS

CONTINUATION

usIMG THE RUM
"EZCRIFT—HAME"

DIRECTIVE DIRECTIVE
3GL PROGRANS
CaN EXECUTE
3IGL PROGRAHS
STANDARD PUBLIC
PROGRAM PROGRAH

usinG THE RUM
"FROGRAM—MAME"
COMMERD

usIMG THE CALL
VPROGRAM—MAME"
COMMAHD

CORME MO COMMAND
OVERLAY PUBLIC
USIMG THE USING THE
EUM OVERLAY REUM PUELIC
“EICRIFT—HAME" " SCRIPT=MAME"
COMMaND COMPMAMD

38

Copyright © 2007 Thoroughbred Software International, Inc.

TERMINATE
COMMAND RETURMS
TO L&sT SELECTED

IDOL-IV MEMU

Continuation Script Execution

PRINARY

usinG THE RUM
"ZCRIFT—MAME"
COMMERD

CONTINUATION

usinG THE RUM
"ZCRIFT—MAME"
COMMERD

46L SCRIPTS

CONTINUATION

SCRIPT

46L SCRIPTS

FRIMARY

usinGg THE RUM
"SCRIFT—M&ME"

CAN EXECUTE

36L PROGRANS

CONTINUATION

usinG THE RUM
"ZCRIFT—MAME"

STANDARD
PROGRAM

uzIMG THE RUN

"PROGREM=HEHE"

CombSHD

PUBLIC
PROGRAM

usinGg THE CALL
"PROGRAM—HSME"
COMMEARD

COMMARD COMMERD
OVERLAY FUBLIC
USIME THE USING THE
EUM OVERLAY REUM PUELIC
"EZCRIFT—HAME" VSCRIPT—HAME"
COMMaND COMMARMD

Copyright © 2007 Thoroughbred Software International, Inc.

39

Overlay Script Execution

PRINARY CONTINUATION OVERLAY

usinG THE RUM

OVERLAY “scrIFT
MAME" COMMARD

usinG THE RUM

OVERLAY “zcrIFT
HEAME" COMRMEND

usinGg THE RUM
OVERLAY "SCRIFT—

MNEME" COMMEHD

46L S5CRIPTS

CAN EXECUTE
OVERLAY
SCRIPT
46L SCRIPTS 3I6L PROGRANS

TERHINATE
COMMAMD RETURMS OVERLAY FUBLIC ::3;:;"
To EXECUTIMG

usIMG THE RUM
FUBLIC “scrIFT—
HEAME" COMRMEND

SCRIPT usINg THE RUN
OVERLAY "SCRIFT

HEAME" COMRMEND

usiMG THE CALL
"FROGRAM—MAME"
COMMERD

40

Copyright © 2007 Thoroughbred Software International, Inc.

Public Script Execution

PRINARY

USING THE
EUN PUBLIC
"SCRIFT—M&ME"
COMMEARD

CONTINUATION

USING THE
EUN PUBLIC

"SCRIFT—M&ME"
COMMEARD

OVERLAY

USING THE
EUN PUBLIC

"SCRIFT—M&ME"

COMMAMD

PUBLIC

USIME THE
FUM FUBLIC
"EZCRIFT—HAME"
COMMaND

TERHINATE

COMMAND RETURMS
TO EXECUTIMG
SCRIFT

46L S5CRIPTS

PUBLIC

SCRIPT

46L SCRIPTS

PUBLIC

USING THE

COMMAMD

EUN PUBLIC
"SCRIFT—M&ME"

41

CAN EXECUTE

36L PROGRANS

PUBLIC
PROGRAH
USIME THE
FUM FUBLIC
"EZCRIFT—HAME"
COMMaND

Copyright © 2007 Thoroughbred Software International, Inc.

Script Type Execution and Memory Usage

Memory Use = = =
T | PRIMARY SCRIPT
I | RUNPUBLIC "P1" PUBLIC P1
M — | RUN PUBLIC "P2" — | PUBLIC P2
E < | TERMINATE
U
RUN PUBLIC "P3" = | PUBLIC P3
< | TERMINATE
U < | TERMINATE
RUN OVERLAY "01" = | OVERLAY 01
U < | TERMINATE
CALL "3GLPUBI1" — | TSI Basic 3GLPUB1
U < | EXIT
RUN "C1"
\
U | CONTINUATION SCRIPT
RUN PUBLIC "P4" = | PUBLIC P4
RUN PUBLIC "P5" = | PUBLIC P5
U < | TERMINATE
< | TERMINATE
U | RUN OVERLAY "02" = | OVERLAY 02
RUN OVERLAY "03" | = [OVERLAY 03
< | TERMINATE
U < | TERMINATE
TERMINATE
\
MENU

Note: Primary and continuation scripts displace each other in memory. Overlay, public, and 3GL public
scripts accumulate in memory until terminated. In all cases, an EXIT or TERMINATE returns
control to the command that follows the RUN or CALL.

42

Copyright © 2007 Thoroughbred Software International, Inc.

ScCRIPT-IV TIPS AND TECHNIQUES

Script-IV provides advanced data handling features. This chapter contains the following sections:
e Terminal Keyboard Values describes how to manage certain types of data generated by Script-IV.

* Escape Processing describes how to use the Escape key to interrupt script
execution.

* Using Keys describes how to use KEY references with secondary keys and with numeric and date
keys.

* CONNECT Commands describes how to use CONNECT commands.
* Database Maintenance and Script-1V provides a list of features exclusive to database maintenance.

* Interface to Thoroughbred Basic describes the interface between Script-IV and the Thoroughbred
Basic third generation language.

Terminal Keyboard Values

The Script-IV TERM-KEY variable enables you to:

» specify actions that will be taken when a function key is pressed.
* keep track of which key was last pressed during script execution.
* set a time-out value for data entry.

For more information on the TERM-KEY variable see the description in the Script-IV Language
Reference.

Escape Processing

Normal script execution can be interrupted by pressing the Escape key. Most terminals provide an
Escape key or a keystroke sequence that performs the escape function. The script specifies how the
escape will be processed. There are two ways of handling escape processing in Thoroughbred Script-IV:

» Standard escape processing, which is controlled by the ESCAPE variable

* Custom escape processing, which is controlled by the ESCAPE-KEY command

Standard Escape Processing
The operator presses the Escape key during script execution. The following message is displayed:

Terminate (Y/N)?

43

Copyright © 2007 Thoroughbred Software International, Inc.

Standard escape processing means that the operator can choose to halt the script or continue script
execution. If standard escape processing is disabled, pressing the Escape key will have no effect and the
script will continue to execute. You can enable or disable standard escape processing by setting the value
of the ESCAPE variable in the script.

Setting the ESCAPE variable to "Y" enables the standard escape procedure:
LET ESCAPE = "Y"
Setting the ESCAPE variable to "N" disables the standard escape procedure:
LET ESCAPE = "N"

The standard processing procedure checks the value of this variable to see if it is enabled. If the ESCAPE
variable is not set in a script, the default is Y, and standard escape processing is enabled. For more
information on the ESCAPE variable see the Script-IV Language Reference.

Custom Escape Processing

The ESCAPE-KEY command provides the ability to design custom escape processing. The command
syntax is ESCAPE-KEY procedure|OFF|ON.

ESCAPE-KEY procedure This ESCAPE-KEY command specifies a procedure to execute when the
Escape key is pressed. This command overrides the value of the ESCAPE
variable and disables standard escape processing. The ESCAPE-KEY
procedure command also replaces any previous custom escape processing set
in the script.

ESCAPE KEY OFF This command turns off custom escape processing. The standard escape
processing procedure is enabled.

ESCAPE-KEY ON This command reactivates the last specified custom escape processing
procedure. If the script did not previously specify a custom escape processing
procedure, this command is ignored.

In primary and continuation scripts, the ESCAPE-KEY command can be used multiple times. The

custom escape processing set with the ESCAPE-KEY command overrides any previously defined

custom processing.

In public and overlay scripts, only one custom escape procedure should be specified. If multiple
ESCAPE-KEY commands are used, the last one encountered by the compiler is the only one executed.

For more information on the ESCAPE-KEY command see the Script-IV Language Reference.

Using Keys
This section describes how to use KEY references with the following types of keys:

* Secondary Keys

44

Copyright © 2007 Thoroughbred Software International, Inc.

e Numeric and Date Keys

Secondary Keys

When you use a KEY reference with secondary keys more than one match is possible. Because of this,
when a processing procedure is specified all records that match the specified key will be processed. If no
processing procedure is specified only the first match will be read.

Please consider the following examples:

READ link-name USING SORT n IS key-value
READ link-name USING SORT n IS NEXT

This example returns one record beyond the record where the closest match with key-value occurred.

READ link-name USING KEY SORT n IS key-value
PROCESSING IS your-process

This example processes all records that match the key-value.

READ link-name USING KEY SORT n IS key-value
This example only processes the first record that matches the key-value.

Note: The SORT option specifies a sort definition that can be used to access the records in the file by a
secondary key. When a SORT option is used, a string value must be specified and the MISSING
KEY procedure is not valid. File access using a secondary key will access the record closest to
the specified key. A record will always be accessed unless an end of file is reached. For more
information see the description of the READ command in the Script-IV Language Reference.

Numeric and Date Keys

Note: The following information applies to date fields because they are numeric fields.

To use Script-IV to perform file input or output using a numeric key, you must manually pad the data in
Script-IV so that it matches the specifications in the format.

For example, if the OPLINES format uses a numeric key called SEQ-NUM defined with a length of 4.0
and a padding type of 3 (right justify and zero fill), the following command will pad the data when adding
a new record:

ADD OPLINES USING KEY STR(SEQ-NUM :"0000")
The spacing in the syntax of this command is significant.

For multi-part keys, you must pad any part of the key that is a numeric field. For example:

ADD OPLINES USING KEY CUS-CODE + STR(SEQ-NUM :"0000")

45

Copyright © 2007 Thoroughbred Software International, Inc.

There is an alternative to padding the numeric data every time you use it in a file input or output
command. To use a numeric key to maintain a sequence number, such as an invoice number, it may be
easier to define an alphanumeric key and manually convert the data to numeric form to increment it for
the next sequence number. For example:

LET ALPHA-SEQ-NUM = STR(NUM(ALPHA-SEQ-NUM) + 1:"0000")

A valid entry range specified in the format will not validate that only numbers are entered into the
alphanumeric sequence number field. For example, if ALPHA-SEQ-NUM has a length of 4 and a valid
entries range of 1,0000,9999, an entry of 000Z is accepted as valid (the valid entries range check
performs an entire string comparison).

CONNECT Commands

The CONNECT commands enable a script to connect to various object classes defined in Dictionary-I1V,
such as help, menus, screens, and views. Additionally, CONNECT commands enable scripts to connect to
Query-IV queries or Report-1V reports.

The data in the objects and the functional capabilities of each class are available during script execution.
Use of CONNECT commands enables developers to focus on data objects and the classes used to define
them, which assures data independence and reduces the amount of procedural Script-IV code required to
make use of a data object.

The CONNECT commands enable concurrent development of data objects and scripts. They are designed
to promote fast, flexible prototyping and development.

CONNECT HELP

This command enables you to connect to a help definition specified in Dictionary-IV and display the help
text during script execution.

For more information on the CONNECT HELP command see the Script-IV Language Reference. For
more information on how to create a help definition see the Dictionary-IV Developer Guide.
CONNECT MENU

This command enables you to connect to a pop-up menu definition specified in Dictionary-IV and display
the menu during script execution.

For more information on the CONNECT MENU command see the Script-IV Language Reference. For
more information on how to create a menu definition see the Dictionary-IV Developer Guide.
CONNECT QUERY

This command enables you to connect to a Query-IV query, and display or print the query during script
execution.

46

Copyright © 2007 Thoroughbred Software International, Inc.

For more information on the CONNECT QUERY command see the Script-IV Language Reference. For
more information on how to create a query see the Query-IV Reference Manual.
CONNECT REPORT

This command enables you to connect to a Report-IV report, and display or print the report during script
execution.

For more information on the CONNECT REPORT command see the Script-IV Language Reference.
For more information on how to create a report see the Report-IV Reference Manual.
CONNECT SCREEN

This command enables you to connect to a screen definition specified in Dictionary-1V, display the
screen, and initiate single-record maintenance during script execution.

For more information on the CONNECT SCREEN command see the Script-IV Language Reference.
For more information on how to create a screen definition see the Dictionary-IV Developer Guide.
CONNECT VIEW

This command enables you to connect to a view definition specified in Dictionary-1V, display the view,
and initiate multi-record maintenance during script execution.

For more information on the CONNECT VIEW command see the Script-IV Language Reference. For
more information on how to create a view definition see the Dictionary-IV Developer Guide

Database Maintenance and Script-IV

The implementation of a feature sometimes depends upon its context, in this case features in Script-IV
and Dictionary-IV Database Maintenance. Whether a feature is implemented depends on how useful the
feature is and whether the feature has meaning in a given context.

For example, the format security settings for "Add Only" and "Change Only" have meaning in
Dictionary-IV Database Maintenance where "add mode" and "change mode" exist. However, these format

security settings have no meaning in Script-IV because these features were not implemented in Script-1V.

The following features are implemented for formats in Dictionary-IV Database Maintenance but not in
Script-1V:

e Security: Add Only

* Security: Change Only

* Valid Entries: File Lookup Read Option 1
* Delete Record Value

47

Copyright © 2007 Thoroughbred Software International, Inc.

* Audit

The following features are implemented for links in Dictionary-IV Database Maintenance but not in
Script-1V:

* Terminal Access
* Operator Access
e Password

* Audit

For more information on these features see the Dictionary-IV User Guide.

Interface to Thoroughbred Basic

Script-IV provides an interface to Thoroughbred Basic language elements and data constructs. This
interface adds functionality and flexibility to the Script-IV language by increasing the number of available
language elements and by providing more control over certain types of programming details.

This section contains the following subsections:

* Thoroughbred Basic Files describes how Script-IV can use data files created by Thoroughbred
Basic applications.

e Thoroughbred Basic Programs describes how to execute Thoroughbred Basic programs from
scripts.

For more information on Thoroughbred Basic see the Thoroughbred Basic Reference Manual.

Thoroughbred Basic Files

Script-IV can access data files created by a Thoroughbred Basic application. To use an existing data file
in a script, follow the procedure below:

1. Define the format definition to be used to access the data record.
2. Create a link, which references the format and the data file.

3. Access the file in IDOL-IV file maintenance to verify that your format and link definitions are
correct.

4. Declare the link in your script.
5. Open the link in your script.
After you complete this procedure, you can use Script-1V file /O commands to access the file through the

link name. For more information on Thoroughbred Basic data files see the Thoroughbred Basic Reference
Manual.

48

Copyright © 2007 Thoroughbred Software International, Inc.

Thoroughbred Basic Programs

Script-IV can execute Thoroughbred Basic programs. This feature enables you to access existing
Thoroughbred Basic applications in Script-IV. For more information on Thoroughbred Basic programs
see the Thoroughbred Basic Reference Manual.

Standard Thoroughbred Basic Program

To execute a standard Thoroughbred Basic program from a script you can use the RUN program-name
command. From this program, you can use the RUN program-name directive to execute another
Thoroughbred Basic program or a primary script or use the CALL program-name directive to execute a
Thoroughbred Basic public program.

For more information on the Script-IV RUN command see the Script-IV Language Reference. For more
information on the Thoroughbred Basic CALL and RUN directives see the Thoroughbred Basic
Reference Manual.

Thoroughbred Basic Public Program

To execute a Thoroughbred Basic public program from a script you can use the CALL program-name
command. From this program, you can use the CALL program-name directive to execute another
Thoroughbred Basic public program.

For more information on the Script-IV CALL command see the Script-IV Language Reference. For more
information on the Thoroughbred Basic CALL directive see the Thoroughbred Basic Reference Manual.

Migrating Programs to Scripts

You can migrate a Thoroughbred Basic application to Script-IV in stages by replacing software programs
with scripts. Scripts can emulate the appearance of existing software so that the look and feel remains
constant during the conversion. After the Thoroughbred Basic application is fully migrated, you can
enhance the applications with features inherent in the IDOL-IV fourth-generation application
development system.

49

Copyright © 2007 Thoroughbred Software International, Inc.

COMPILING SCRIPTS

Note: If you use Source-IV to edit scripts, you must compile the scripts from Source-IV. If you use the
Script-IV script editor to edit a script, you must compile the script from the script editor.

If you plan to use Source-IV to compile scripts, you can skip the section on How to Compile
from the Script Editor. However, the rest of the information in this chapter is relevant and

useful.

For more information on Source-IV see the Source-IV Manual.

Introduction

You cannot execute a script until it has been compiled. The compiler produces a 3GL Thoroughbred
Basic program from the source script, a program listing, error messages, and error diagnostics. If no errors
occur, the resultant program can be executed.

The following sections are included:

* How to Compile from the Script Editor

* How to Compile from the IDOL-IV Development Menu

e How to Use a Compile List

* How to Define Your Own Compile List

* How to Manage Compilation Errors

* Error Messages

50

Copyright © 2007 Thoroughbred Software International, Inc.

How to Compile from the Script Editor

Use the script editor to compile a single script. To compile from the script editor, you must access the
script you plan to compile, for example:

'ﬁ.Func’ciDnKeys File Edit Terminal Window _|E‘|i|

1-Fmt 2-Scrn 3-Uiew &4-Link 5-Henu 6-Hsqg 8-Ghl R-Rpt

SCRIPT HameSmilySyy,| V48 SAMPLE SCRIPT FOR MANUAL - DO HOT USE
Passuord: HinbE 11711797 18:27 FHEEEGE
1

<1-Primary 2-Continuation 3-Overlay
4-FH PrefPost 5-Copy 6-Public

F1-5plit F2-Join F3/F7-Cpl F4End F6-Hlp F8-Sr/Rp F?-ExpSn F18-Goto F11-Cmt
T-===T==T==T==T==T==T==T-=T==T==T==T==C==T==T-=T-=T-=T-=T-=T-=T--T--T--T

Type:

LH UTLBIH
SH UTSBIHN
MAIHLIHE

OPEH LIHK UTLEIH
OPEM SCREEM UTS8IH

PRINT SCREEH UTS8IH
INPUT SCREEH UTSEIHN

To begin the compilation process, press the F3 or F7 key. The following message will be displayed:
Do you want to save and compile (Y/N)?
Y starts the procedure.

N halts the compilation process. Control returns to the script editor.

51

Copyright © 2007 Thoroughbred Software International, Inc.

Press the Y key. The following screen will be displayed:

‘ﬁ.Func’ciDnKeys File Edit Terminal Window _|E‘|i|

COMPILE SCRIPTS

ut
Select everything? G S:))]
H PSIH (RETURH for first)

to H PSIN (RETURH for same or last)
ST ELCE S Hone—— (RETURHM for none)

Is the displayed information correct (¥/H)?

Script-1V fills in the compilation information. You must answer the question at the bottom of the screen:
Is the displayed information correct (Y/N)?

Y Dbegins compilation using the displayed information.

N enables you to respecify the displayed information.

Press the Y key to compile the script. The script code will be listed as it is compiled. To stop the
compilation process at any time, press the Escape key.

Errors pause compilation. Take one of the following actions:
e To halt compilation, press the F4 key.

* To continue compiling after an error is encountered, press the
Enter key.

e Ifthere is no response after 15 seconds, compilation continues as if the Enter key was pressed.

* Ifyou started the compile from the Script-IV script editor, you can return to the script editor by
pressing the F1 key. You can fix the error, then press the F3 or F7 key to compile the script.

For more information on the errors you may encounter see the sections on How to Manage Compilation
Errors and Error Messages.

After the compiler finishes processing, you will be returned to the last active menu.

52

Copyright © 2007 Thoroughbred Software International, Inc.

How to Compile from the IDOL-IV Development Menu

Use the IDOL-IV Development Menu to compile a single script, a range of scripts, or a library of scripts:

‘&.Func’tionKeys File Edit Terminal ‘Window _|E|i|

CoD E 11/11/97
IDMENU1 Thoroughbred IDOL-IV Development Henu 85 :56 PH

Script-IU/Report-IU UTILITIES

6 Generate Compile List

7 Compile from Generated List
8 Compiling Error Report
[H

P

Dictionary-IU MAINTEHMAHNCE
DEFINITION |— LIBRARY
1 Edit

2 List

3 Print

Compile Scripts
Print Reports

DATABASE MAINTEHAMCE

S Screen (COMHECT SCREEHN)
U Uiew {CONHECT VUIEW)

SYSTEWH SELECTIDHS
¢ IDOL-IV Utilities Menu
18 Terminal Logoff

[Selection: [N

To compile from the IDOL-IV Development Menu, type C and press the Enter key. The COMPILE
SCRIPTS screen will be displayed:

‘ﬁ.Func’ciDnKeys File Edit Terminal Window _|E‘|i|

COMPILE SCRIPTS

[Library-J B
Select everything? (Y/H)
(RETURH for first)

(RETURH for same or last)
using name mask...: (RETURH for none}

53

Copyright © 2007 Thoroughbred Software International, Inc.

You must answer the following questions:

Library:

Enter the name of the library that contains the scripts you plan to compile.
Select everything (Y/N)?

Select one of the following:

Y means every script in the library will be compiled.

N means you plan to specify a range of scripts to compile.

from name:
to name:

To define a range of scripts, you can use the following specifications:

» To specify all the scripts in the library, press the Enter key in the from name ficld and press the
Enter key in the to name field.

* To specify a range of scripts, type the name of the first script you plan to compile in the from name
field and the name of the last script you plan to compile in the to name field.

» To specify a single script, type the name of the script you plan to compile in the from name field and
press the Enter key in the to name field.

In most cases, you only need to type enough of a script name to identify it as a unique name, then press
the Enter key and let the system fill in the rest of the name.

using name mask:

A name mask enables you to select a set of scripts from a range of scripts. You do not have to compile all
the scripts in the range and you do not have to select individual scripts to compile one at a time. If you do
not plan to use a mask, press the Enter key.

Use the following information to define a mask:

* A mask is a string of characters used to test the string of characters in the script name. A script name
that matches the mask is selected for compilation.

* A mask can contain match and passing characters. A character in a script name must be the same
character as the match character and occur in the same position. The ? is the pass character, which
means that no match in this position is needed.

Mask action definition names
A? selects AB Ac Al
bypasses aB cA 11
54

Copyright © 2007 Thoroughbred Software International, Inc.

After you have answered all of these questions, the following message will be displayed:

Is the displayed information correct (Y/N)?
Enter one of the following:

Y Dbegins compilation using the displayed information.

N enables you to respecify the displayed information.

Press the Y key to compile. The name of each script and its description will be displayed as it compiles.
The script code will be listed below this information. To stop the compilation process at any time, press
the Escape key.

Errors pause compilation. To continue compiling after an error is encountered, press the Enter key. For
more information on the errors you may encounter see the sections on How to Manage Compilation
Errors and Error Messages.

After the compiler finishes processing, you will be returned to the COMPILE SCRIPTS screen.

How to Use a Compile List

A compile list is a list of scripts that need to be compiled before they can be executed. To maintain
applications, you can use the Generate Compile List and Compile from Generated List Utilities from the
IDOL-IV Development Menu.

The Generate Compile List Utility searches through a range or library of scripts. It compares the change
date of the script, the change date of any copy script used by the script, and the change date of any
definition such as a format or screen used by the script, to the compile date. If any of these change dates
are more recent than the compile date, the utility puts the script in a compile list. After the library or range
is checked, you can specify another range or library to search for script names to add to the list.

The name of the compile list is 4GLCL¢#¢, where # is the terminal ID. Any compile list is unique to the
terminal where it is created. Each time you select the Generate Compile List Utility the compile list is

erased before a new list is created.

The Compile from Generated List Utility compiles the scripts in the compile list.

55

Copyright © 2007 Thoroughbred Software International, Inc.

How to Build a Compile List

To create a compile list, go to the IDOL-IV Development Menu. Type 6 and press the Enter key. The
GENERATE COMPILE LIST screen will be displayed:

‘&.Func’tionKeys File Edit Terminal ‘Window _|E|i|

GEMERATE COMPILE LIST

[Library -
Select everything? (Y/H)

from H (RETURHM for first)
to H (RETURN for same or last)
using name mask...: {RETURH for none}

You must answer the following questions:

Library:

Enter the name of the library that contains scripts you plan to include in the compile list.
Select everything (Y/N)?

Select one of the following:

Y means every script in the library will be checked.

N means you plan to specify a range of scripts to check.

from name:
to name:

To define a range of scripts, you can use the following specifications:

» To specify all the scripts in the library, press the Enter key in the from name ficld and press the
Enter key in the to name field.

* To specify a range of scripts, type the name of the first script you plan to compile in the from name
field and the name of the last script you plan to compile in the to name field.

56

Copyright © 2007 Thoroughbred Software International, Inc.

» To specify a single script, type the name of the script you plan to compile in the from name field and
press the Enter key in the to name field.

In most cases, you only need to type enough of a script name to identify it as a unique name, then press
the Enter key and let the system fill in the rest of the name.

using name mask:

A name mask enables you to select a set of scripts from a range of scripts. You do not have to compile all
the scripts in the range and you do not have to select individual scripts to compile one at a time. If you do
not plan to use a mask, press the Enter key.

Use the following information to define a mask:

* A mask is a string of characters used to test the string of characters in the script name. A script name
that matches the mask is selected for compilation.

* A mask can contain match and passing characters. A character in a script name must be the same
character as the match character and occur in the same position. The ? is the pass character, which
means that no match in this position is needed.

Mask action definition names
A? selects AB Ac Al
bypasses aB cA 11

After you have answered all of these questions, the following message will be displayed:

Is the displayed information correct (Y/N)?

Enter one of the following:

Y begins checking change dates using the displayed information.

N enables you to respecify the displayed information.

Press the Y key to check change dates. If no script needs to be compiled, the compile list will be empty.
After the utility finishes processing, you will be returned to the GENERATE COMPILE LIST screen.
How to Compile from a Compile List

To compile all of the scripts on the compile list, go to the IDOL-IV Development Menu. Type 7 and press
the Enter key. The following message will be displayed:

|Do you want to compile from 4GLCLtt generated date - time (Y/N)?

Enter one of the following:
Y compiles the scripts on the compile list.

N halts the process and returns you to the IDOL-IV Development Menu.

57

Copyright © 2007 Thoroughbred Software International, Inc.

Press the Y key to compile the scripts on the compile list. If the compile list exists, and if it is not empty,
the name of each script and its description will be displayed as it compiles. The script code will be listed
below this information. To stop the compilation process at any time, press the Escape key.

Errors pause compilation. To continue compiling after an error is encountered, press the Enter key. For
more information on the errors you may encounter see the sections on How to Manage Compilation
Errors and Error Messages.

After the compiler finishes processing, you will be returned to the IDOL-IV Development menu.

If the compile list does not exist or is empty, the utility will display a message. Press the Enter key to
return to the IDOL-IV Development Menu.

How to Define Your Own Compile List

If the Generate Compile List Utility described in the preceding section does not meet site requirements,
you can use alternate methods to build compile lists. The following sample Thoroughbred Basic code is
distributed with IDOL-IV as the IDU006 program. It builds a compile list from a range of scripts. You
can modify the code to match your specifications.

0010 REM &REM&

0100 SETERR 9000; ! Set error trap.
SETESC 9000; ! Set escape trap.
PRINT 'WC', 'CN', ! Clear all windows.
"Build List of Scripts to Compile",;
C1l=UNT; ! Get an available channel.
OPEN (Cl) "IDDBD"; ! Open the dictiomnary.
FID$=FID(Cl), < > ! Get the FID of dictiomnary.
1

D=DEC (FIDS$ (20,1)) Save disk number.

0200 INPUT @(0,2), 'CL', ! Get "from script" name.
"Enter starting script name: ",FROMS;
IF CTL=4 ! If F4 key is pressed,
GOTO 9000 ! leave the procedure.
FI;
EXTRACT (Cl1l,KEY="P"+FROMS$,DOM=201) ! Move key pointer.

0210 K$=KEY(C1l,END=200) ; ! Get next key.
READ (C1); ! Unextract the key.
IF K$(1,1) <> "pn ! If not a script record
GOTO 200 ! reenter from script name.

FI

58

Copyright © 2007 Thoroughbred Software International, Inc.

0220 INPUT @(0,3),'CL’ ! Get "to script" name.
"Enter ending script name: ",TO$

IF CTL=4 ! If F4 key is pressed
GOTO 9000 ! leave the procedure.

FI;

IF TO$=FROM$ AND TOS$<>"" I If "to value" = "from value"
TO$=TOS+"~" ! add last value to entry

FI;

IF TOo$="" ! ITf Enter key pressed
TOS="~" ! set to last key value.

FIS

IF TOS$<FROMS ! Tf "to value" < "from value"
GOTO 220 ! reenter "to value".

FI;

FROMS$S="P"+FROMS, ! Add "P" key prefix to "from

TOS="P"+TO$! value" and "to value".

0300 CLF$="4GLCL"+FID(O0) ; ! Set compile list file name.

CLEAR ERC; ! Clear error control.

WHILE ERC=0; ! Erase compile list file on
ERASE CLF$, ERC=1; ! all available disks.

WEND ;

SORT CLF$,9,2000,D,0; ! Create compile list file

C2=UNT; ! Get an available channel.

OPEN (C2) CLFS; ! Open the compile list file.

WRITE (C2,KEY=00+DAY) ; ! Write data header record.

TO=TIM,T1=FPT (TO) *60, ! Resolve time.

TO$=STR(TO:"00") +":"+
STR(T1:"00")+":"+
STR(FPT (T1) *60:"00") ;

WRITE (C2,KEY=01+TOS) ; ! Write time header record.

EXTRACT (C1l,KEY=FROM$,DOM=301)! Move key pointer back to

! from record.
0400 KS$=KEY(C1l,END=9000) ; ! Get next key.

IF K$>TO$! Tf next key is out of range
GOTO 9000 ! leave the procedure.

FI;

IF STL(K$)=9 ! ITf key is a header record
PRINT @(40,0) ,K$(2),; ! print current script name
WRITE (C2,KEY=KS$) ! write it to compile list

FI;

READ (Cl,KEY=K$+$FF$,DOM=400) ;! Move pointer to next! header.

GOTO 400 ! Go get next key.

9020 RUN "ID" ! Return to IDOL-IV menu.

How to Manage Compilation Errors

You must remove errors from scripts to produce working programs. The following subsections describe
how to manage common compilation problems:

* How to Use the Compile Error Report describes how to get a list of the errors produced during
compilation.

59

Copyright © 2007 Thoroughbred Software International, Inc.

* How to Resize Scripts and Programs describes strategies you can use when scripts or programs are
too large to be compiled.

How to Use the Compile Error Report
The Compile Error Report makes a list of the errors produced by the last compile. When you compile a
script or a group of scripts, all errors are written to the compile error log file. When you perform a new

compile, this file is overwritten.

To display the compile error log, go to the IDOL-IV Development Menu. Type 8 and press the Enter
key. If the compiler found errors, a screen similar to the following will be displayed:

‘ﬁ.Func’ciDnKeys File Edit Terminal Window _|E‘|i|

mTPSIN 802080 MAIHLINE ** ERR=UTSBIN
UTPSIH aaza1 ** Invalid Screen U

To move through the screen, press the down arrow, up arrow, Page Down, Page Up, or Home key. To go
to a specific line, press the F10 key.

To exit the utility, press the F4 key. The following message will be displayed:
Do you want a printed copy (Y/N)?

Enter one of the following:

Y prompts you to enter a printer code where the hard copy will be produced.

N exits the utility and returns you to the IDOL-IV Development Menu.

60

Copyright © 2007 Thoroughbred Software International, Inc.

How to Resize Scripts

If a script is too large, the script will not be compiled and the following message will be displayed:
Generated code is nnnnnn bytes and cannot be saved

A compiled script cannot exceed 64K. If a script is too large, consider turning parts of the script into

overlay scripts. For more information on overlay scripts see the section on Different Types of Scripts in
Chapter 2.

Error Messages

The following subsections contain lists of syntax errors and other compilation errors.

Syntax Errors
** ERR=(script statement where error found)

The compiler expects a Script-IV key word and one is not found, or a key word other than a data
declaration is found in the Data Declaration section of the script.

** ERR: (statement with basic compile error)
The script has attempted to open or access undeclared definitions, or the script has attempted to
access a definition that has not been opened. Another common cause of this error is making
assignments without using the LET keyword.

** JTF/ENDIF mismatch

The compiler has encountered a new procedure with unmatched IFs and ENDIFs; there must be a
corresponding ENDIF for each IF/THEN statement.

** JF/LOOP nesting error

The compiler has encountered a procedure with misplaced ENDIFs and ENDLOOPs. Check the
order of ENDIFs and ENDLOOPS and make sure they match the nesting order.

** JF/THEN mismatch

The compiler has encountered an IF statement with an unmatched THEN; there must be a
corresponding THEN for each IF statement.

** Invalid IF structure
The compiler has encountered incorrect [IF/ENDIF, LOOP/ENDLOQOP nesting.
** Invalid Link Alias

The link alias is too long. The limit is 8 characters.

61

Copyright © 2007 Thoroughbred Software International, Inc.

** LOOP/ENDLOOP mismatch

The compiler has encountered a new procedure with unmatched LOOPs and ENDLOOPs. There
must be a corresponding ENDLOOP for each LOOP statement.

** No statement generated

The compiler has encountered incomplete syntax. Check for incorrect command structure or key
words, which may be used out of context.

** PRE/POST "ALL" must be first or last
The compiler has encountered a PRE or POST option in an INPUT SCREEN command that
specifies ALL, but ALL is not the first or last specification. Specify ALL in the first or last
position for the PRE or POST option.

** undefined procedure

The compiler could not locate the referenced procedure.

Other Compile Errors
** Uxxxxxxxx'" already exists but is not a program
The referenced script name is not a program file.
** Copy source xxxxxx not found
The source specified in a COPY or INCLUDE statement cannot be located.
** Copy source xxxxxx is being edited by another user

The source specified in a COPY or INCLUDE statement was located but it is being accessed by
another user.

** Duplicate line number

The same Thoroughbred Basic line has been generated twice. Call Thoroughbred Product
Support.

** Duplicate procedure

The same procedure name has been used twice in a script.
** Invalid format (format-name)

The specified format is not defined in the IDOL-IV dictionary, or it is corrupt.
** Invalid link (link-name)

The specified link is not defined in the IDOL-IV dictionary, or it is corrupt.

62

Copyright © 2007 Thoroughbred Software International, Inc.

** Invalid screen (screen-name)

The specified screen is not defined in the IDOL-IV dictionary, or it is corrupt.
** Invalid view (view-name)

The specified view is not defined in the IDOL-IV dictionary, or it is corrupt.
**(link-name) has no text field defined

There is no text field defined in the script. Specify a text-id for the relevant command.
**(link-name) text field ""text-id" is not defined

The specified text field is not defined in the link.
** Missing Text File Name

This message can only occur for links that specify MSORT or TISAM files. Check the TEXT
File specification in the Link Definition.

** No sorts defined for (link-name)

There are no sorts defined in the specified link.

63

Copyright © 2007 Thoroughbred Software International, Inc.

SAMPLE SCRIPTS

The scripts illustrated in this chapter are from the 4S library. You can edit, view, or print any of these
scripts. These scripts demonstrate various features and capabilities of the Script-IV language. If you plan to
use any of these scripts in an application, you may have to modify it to meet site requirements.

The following sample scripts are illustrated:

4SEX001 is a primary script that provides an example of line offset with scrolling.

4SSAMPL1 s a copy script used for data declarations.

4SSAMPL2 is an overlay script that initializes demonstration data.

4SSAMPL3 is an overlay script that provides examples of the PRINT VIEW command.

4SSAMPL4 is an overlay script that provides an example of the CHANGE command.

4SSAMPLE is a primary script that provides an example of how scripts can be used in sales. It is the
parent script of all the 4SAMPLXx scripts listed above.

64

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 45 EX001 Type: 1 Primary

Desc: SCRIPT-IV Sample: Line Offset with Screl Page: 1
Last Change Date: 11/26/88 Last Compile Date: 05/09/95%
Time: 12:45:17 Time: 17:39:07 Date:; 05/12/95
* 4SEX001 - SCRIPT-IV Sample ~ Shows Line Offset with Scrolling
5D 45SEXC1
DD START-LINE (2.0}, SCROLL-FLAG (1)
MAIN-LINE

OPEN SCREEN 4S5EXO01; OPEN 45EXO01 CREATE
READ 4SEX01 USING KEY RANGE FROM FIRST TO LAST
PROCESSING 1S DPELETE-RECS
INPUT SCREEN 4SEXCl PRE PROCESS DNA, GET-START-LINE
LET L = 1, L1 = 0
DO LOOP UNTILIL TERM-KEY = 4
LET 4SEX01 = "", DNA = STR(L:"000000")
READ 4SEX01l USING KEY DNA
MISSING KEY PROCESS IS5 NEW~REC
PRINT SCREEN 4S5EX01 DATA LINE QFFSET IS L1
INPUT SCREEN 45EX01 DATA-NAME DNB LINE OFFSET IS L1
POST PROCESS DNB, SCROLL
IF TERM-KEY <> 4 AND SCROLL-FLAG <> "X" THEN
ADD 48SEXQ1 USING KLY STR{L:"000000"); LET L =1L+ 1
IF L1 < 4 THEN
LET L1 = L1 + 1

ELSE
PRINT €(0, START-LINE), 'LD',
ENDTF
ENDIF
1ET SCROLL-FLAG = ""
ENDLOOP
NEW-REC
PRINT @(0,4), "CAN'T FIND REC: ", DNA,
SCROTL

TF TERM-KEY <> 0 THEN
LET SCROLL-FLAG = "X", 45EX01.FIELD = 99
ENDIF
IF TERM-KEY = -4 THEN
IF L1 > 0 THEN
LET 11 = 11 - 1
ELSE
IF L > 1 THEN
PRINT @(0, START-LINE + 4), 'LD', @(0, START-LINE), 'LI',

ENDIF
ENDIF
IF L > 1 THEN LET L. = L. - 1; ENDJF
ENDIF
IF TERM-KEY = -3 THEN

IF L1 <« 4 THEN
LET L1 = L1 + 1

ELSE
PRINT @(0, START-LINE), 'ID',
ENDIF
LET L = L + 1
ENDIF

GET-START-LINE

LET START-LINE = 4SEX01.LINE, 4SEX01.FIETD = 99
DELETE-RECS

DELETE 4SEX01l USING KEY DNA

Script: 48 EXG01 Type: 1 Primary

Desc: SCRIPT-IV Sample: Line Offset with Scrol Page: 2
Last Change Date: 11/26/88 Last Compile Date: 05/09/95
Time: 12:45:17 Time: 17:39:07 Date: 05/12/95
END~SCRIPT
65

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 45 SAMPL1 Type: 5 Copy

Desc: SCRIPT-IV SAMPLE: Data Declarations Page: 1
Last Change Date: 11/26/88 Last Compile Date:

Time: 11:42:39 Time: Date: 05/12/95

* ASSAMPL1 - Data Declarations — Copy meodule for 4SSAMPLE script set

VN 4SCUST, 4SSLSRP, ASINVEN
IN 4SSALDT

SN 4STOPSC1, 4STOPSC2, 4SBOTSCR

DN INPUT-FIAG (1), VIEW~FIAG (1), TEXT-FLAG (1)
DN TAX-RATE (2.0)

66

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 4S8 SAMPL2 Type: 3 Overlay

Desc: SCRIPT-IV SAMPLE: Initalize Demo Data Page: 1
Last Change Date: 11,/26/88 Last Compile Date: 07/19/93

Time: 16:29:10 Time: 09:16:34 Date: 05/12/95

* 45SAMPLZ - Initialize Demo Data - Overlay script to 4SSAMPLE

* 455AMPL1 - Data Declarations - Copy module for 4SSAMPLE script set

VN 4SCUST, 4SSLSRP, ASINVEN
IN 4SSALDT

SN 48STOPSC1, 4STOPSC2, 4SBOTSCR

DN INPUT-FLAG (1), VIEW-FLAG (1), TEXT-FLAG (1)
DN TAX-RATE (2.0)

1~MAIN2

PRINT MESSAGE "D,8"
OPEN LINK 4SSLSRP CREATE

DIM B$(90)
LET B$(1,30) = "John Thompson", BS$(31,30) = "Helen Addiscn",
B$(61,30) = "Steve Watson" , X-0 , AS$ = VITHASW"

DO LOOP UNTIL X = 3
ILET X = X + 1, 45SLSRP.SALES-REP-CODE = A$(X+2-1,2),
SALES=-REP=NAME — BS$(X*30-29,30)
ADD 4SSLSRP USING 4SSI.SRP.SALES~REP-CODE
ENDLOGP

OPEN LINK 4SCUST CLEAR

DIM A$(60), B$(90), C${45), DS$S(45)

LET AS$(1,20)= "Mr. David Kelly", A$(21,20) = "Ms. Marcia Thomas",
AS$(41,20)= "Robert Marks", B$(1,30) = "D K & Associates ",
B$(31,30)= "Computer Inc.",

B$(61,30)= "Today's Business Company",

€5(1,15)= "1010 Main Street", C$(16,15)= "Route 12",
€3$(31,15)= "1650 Kingston Pike", D$(1,15)= "Somerset",
D5(16,15)= "Madison", D$(31,15) = "Palisades Park",

X = 0, CUST-STATE-ZIP = "NJ 07090",

SALES=TAX-CODE = "NJ"

DO LOOF UNTIL X = 3
LET X=X+1, CUST-CODE = STR([X:"600000"),
CUST-CONTACT = AS(X*20~19,20), CUST-NAME
CUST-ADDRESS = C$(X*15-14,15), CUST-CITY
ADD 4SCUST USING KEY CUST-CODE
ENDLOOP

B$ (X*30-22,30),
D5 (X*15-14,15)

|

OPEN LINK 4S5INVEN CLEAR

DIM A$(120), B(3)

LET AS$(1,40)= "bProduct Description",
A%(41,40) = "cProduct Description",
A$(81,40) = T"aProduct Description",

B(l) = 12.95, B{2) = 19,95, B(3) = 1.99, X = 0
DO LOOP UNTIL X = 3
LET X=X+1, 4SINVEN.ITEM-CODE = STR(X:"00-000-000")
ITEM-DESCRIPTION = A$(X*40-39,40),

Script: 45 SAMPL2 Type: 3 Overlay

Desc:

SCRIPT-IV SAMPLE: Initalize Demc Data Page: 2

Last Change Date: 11/26/88 Last Compile Date: 07/19/93

Time: 16:29:10 Time: 09:16:34 Date: 05/12/95

4SINVEN,BASE-PRICE = B(X)
ADD 4S5INVEN USING KEY 4SINVEN.ITEM-CODE
ENDLOOP
OPEN LINK 43SALDT CLEAR

ENDSCRIPT

67

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 4S5 SAMPL3 Type: 3 Overlay

Desc: SCRIPT-IV SAMPLE: Print Views Page: 1
Last Change Date: 11/26/88 Last Compile Date: 07/19/93
Time: 16:06:02 Time: 09:16:51 Date: 05/12/95

* ASSAMPL3 - Print Views - Overlay script to 4SSAMPLE
* 48SAMPL1 - Data Declarations - Copy module for 4S8SAMPLE script set

VN 4SCUST, 4SSLSRP, 4SINVEN

IN 4SSALDT

SN 4STOPSC1, 4STOPSC2, 45BOTSCR

DN INPUT-FIAG (1), VIEW-FLAG (1), TEXT-FLAG (1)
DN TAX-RATE (2.0)

1-MATN3
PRINT MESSAGE "P,5" USINGC "4SSAMPLE"
IF VIEW-FLAG = "C" TNEN
PRINT VIEW 4SCUST USING KEY SORT 1
WINDOW LINE 15
COLUMN 20
NUMBER LINES 3
CHARACTERS 40
BORDER TYPE "R"
FUNCTION "“C"
HEADING "N"
KEY INTO 4SCUST.CUST-CCGDE
IF TERM-KEY <> 1 THEN
LET 4SCUST.CUST-CODE = W™
ENDIF
ENDIF
IF VIEW-FLAG = "S" THEN
PRINT VIEW 4SSLSRP USING KEY SORT 1
WINDOW LINE 15
COLUMN 20
WUOMBER LIKES 3
CHARACTERS 40
BORDER TYPE "R
FUNCTION "C"®
HEADING "N
KEY INTO 4SSLSRP.SALES-REP-CODE
TF TERM-KEY <> 1 THEN
LET 4S8SLSRP.SALES-REP-CODE = "¢
ENDIF
ENDIF
IF VIEW-FLAG = "I" THEN
PRINT VIEW 4S5INVEN USING KEY SORT 1
WINDOW LINE 18
COLUMN 40
NUMBER LINES 3
FUNCTION "Cv
HEADTNG "N"
BORDER TYPE "R"
CHARACTERS 30
KEY INTQO 4SSALDT.ITEM-CODE
IF TERM-KEY <> 1 THEN
LET 43SALDT.ITEM-CODE = "V
ENDIF
ENDIF

Script: 48 SAMPL3 Type: 3 Overlay

Desc: SCRIPT-IV SAMPLE; Print Views) Page: 2
Last Change Date: 11/26/88 Last Compile D@te: 07/19/93
Time: 16:06:02 Time: 09:16:51 Date: 05/12/95

OPEN MESSAGES "4SSAMPLE"

ENDSCRIPT

68

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 4S8 SAMPL4 Type: 3 Overlay

Desc: SCRIPT-1IV SAMPLE: Change Text Page: 1
Last Change Date: 11/26/88 Last Compile Date: 07/19/93
Time: 16:59:59 Time: 09:17:08 Date: 05/12/95

% 4SSAMPL4 - Change Text - Overlay script to 45SAMPLE
* 4SSAMPI1 - Data Declarations - Copy module for 4SSAMPLE script set

VN 4SCUST, 4SSLSRP, 4SINVEN

LN 45SALDT

SN 4STOPSC1l, 4STOPSC2, 45BOTSCR

DN INPUT-FILAG (1), VIEW-FLAG (1), TEXT-FLAG (1)
DN TAX-RATE (2.0)

1-MATN4
CHANGE 45CUST USING 45CUST,CUST-CODE

TEXT "A"™

WINDOW FUNCTION TEXT-FLAG
HEADING "Additional Customer Informatien™
LINE 15
NUMBER LINES 3
CHARACTERS 40
COLUMN 20
BORDER TYPE "R

ENDGCRIPT

69

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 4S5 SAMPLE Type: 1 Primary

Desc: SCRIPT-IV SAMPLE: Sales Script Page: 1
Last Change Date: 11/26/88 Tast Compile Date: 07/19/93
Time: 13:46:56 Time: 09:18:35 Date: 05/12/95

* ASSAMPLE - Sales Script - Parent script of 48SAMPLE script set
* 45SAMPI.1 - Data Declarations - Copy module for 4SSAMPLE script set

VN 48SCUST, 4SSLSRP, 4SINVEN

IN 4SSALDT

SN 4STOPSCLl, 4STOPSC2, 4SBOTSCR

DN INPUT-FLAG (1), VIEW-FLAG (1), TEXT-FLAG (1)
DN TAX-RATE (2.0}

1-MAIN
OPEN SCREEN 45TCPSC1
OPEN SCREEN 4STCPSC2
OPEN SCREEN 4SBOTSCR

OPEN VIEW 4S8CUST
OPEN VIEW 4SSLSRP
OPEN VIEW 4SINVEN

OPFN MESSAGES "4SSAMPLE"

I e e P R BUILD DEMO DATA —-—=——————mmmmmmmmmmo o *
RUN OVERLAY "4SSAMPL2"

I e e L L P e e PRINT ALL SCREENS =—=—--—=————-——mmmmmmoe *
PRINT SCREEN 4STOPSCL
PRINT SCREEN 4STOPSC2
PRINT SCREEN 4SBOTSCR

A e e m S et ————— SET FIRST INVOICE NUMBER -~=-—r~m======= *
LET REFERENCE-NUMBER = "T 100", TAX-RATE = 6
DO LOOP UNTIL INFUT-FLAG = D"
DO 2-GET-REP
ENDLOOP
2-GET-REP

PRINT SCREEN 4S8TOPS3C1l CLEAR DATA
PRINT SCREEN 4STOPSC2 CLEAR DATA
LET INPUT-FLAG = """ , 48SSLSRP = """
INPUT SCREEN 4STOPSC1
POST PROCESS SALES-REP-CODE, 3-VERIFY-REP
IF TERM-KEY = 4 THEN

LET INPUT-FLAG = "D"
TERMINATE PROCEDURE
ELSE
PRINT SCREEN 4STOPSC1 DATA
DO LOCP UNTIL INPUT-FLAG = "D"
DO 5-GET-CUST
ENDLOOP
LET INPUT-FLAG = ""
ENDIF

3-VERIFY-REP
IF TERM-KEY = 1 THEN

70

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 48 SAMPLE Type: 1 Primary

Desc: SCRIPT-IV SAMPLE: Sales Script Page: 2
Last Change Date: 11/26/88 Last Compile Date: 07/19/93
Time: 13:46:56 Time: 09:18:35 Date: 05/12/95
LET VIEW-FLAG = "gn
e PRINT SALES-REP VIEW -———-—-om—mom—————— *
RUN QVERLAY "ASSAMPL3M
ENDIF

LET 4STOPSCLl.FIELD = 99
READ 4SSLSRP USING KEY 4S8SLSRP.SALES-REP-CODE
MISSING KEY PROCESS IS 4-REDO-INPUT

4-REDO-INPUT
LET 4STOPSC1.FTIEID = 0

5-GET-CUST
PRINT SCREEN 45TOPSC2 CLEAR DATA
PRINT MESSAGE "P,6Y
LET INPUT-FLAG = "", 45CUST = "*
INPUT SCREEN 4STOPSC2 KEY
DO 6-CUST-STUFF

IF INPUT-FLAG <> " " THEN
TERMINATE PRCCEDURE
ENDIF
PRINT SCREEN 4STOPSC2 DATA
IF CUST-CODE <> "Cash " THEN
DO 7-CUST-READ
IF TERM-KEY = 4 OR INPUT-FLAG <> " " THEN
TERMINATE PROCEDURE
ENDIF
ENDIF

DO 14-CGET-DETAIL

6=CUST=STUFF
IF TERM=-KEY = 1 THEN

LET VIEW-FLAG = "C"
LT it PRINT CUSTOMER VIEW =e=w=——————————— oo *
RUN OVERLAY "4S5SAMPL3"
ELSE
IF TERM-KEY = 4 THEN
LET INPUT-FLAG = "DV
ELSE
IF TERM-KEY = 2 THEN
LET CUST-CODE = "Cash", CUST-CONTACT = "CASH CUSTOMER"
ENDIF
ENDIF
ENDIF

7=-CUST-READ

CHANGE 4SCUST USING KEY CUST-CODE
MISSING KEY PROCESS IS 8-ADD-CUST
BUSY PROCESS IS 9-LOCKED-CUST
PROCESSING IS 10-CHG-CUST

IF INPUT-FLAG = "T" THEN
LET TEXT-~FLAG = "C"
DO 13-CHG—COMMENTS
LET INPUT-FLAG = ""

7

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 45 SAMPLE Type: 1 Primary

Desc: SCRIPT-IV SAMPLE: Sales Script Page: 3
Last Change Date: 11/26/88 Last Compile Date: 07/19/93
Time: 13:46:56 Time: 09:18:35 Date: 05/12/96
ENDIF
8-ADD-CUST
IF 4S8SCUST.CUST-CODE = " " THEN
LET INPUT-FLAG = "NV
TERMINATE FROCEDURE
ENDIF
* e CUSTOMER NOT FOUND. ADD (Y/N)? =—-------- *

INPUT MESSAGE "¥Y,2" INTO INPUT-FLAG
IF INPUT-FLAG = "Y" THEN
INPUT SCREEN 45TOPSC2 DATA-NAME CUST-CONTACT
POST PROCESS CREDIT-LIMIT, 11-ADD-REC
IF TERM-KEY = 4 THEN
DELETE 4SCUST USING CUST-CODE
MISSING KEY PROCESS IS 21-IGNORE
LET INPUT-FLAG = "N
ENDIF
ELSE
LET INPUT-FLAG = "N"
ENDIF

9-TOCKED-CUST
LET INPUT-FLAG = "L"

10-CHG-CUST
PRINT SCREEN 4STOFSC2 DATA
LET TEXT=-FLAG = "a"
DO 13~CHG-COMMENTS

I MAKE CUSTOMFR CHANGES ? =—emeerm————e——e—— *

INPUT MESSAGE "I,2" INTQO INPUT-FLAG USTNG "4SSAMPLE"
IF INPUT-FLAG <> "C" THEN
LET INPUT-~FLAG = "¢
TERMINATE PROCEDURE
ENDIF
INPUT SCREEN 45TOP5C2 DATA-NAME CUST-CONTACT
POST PROCESS CREDIT-LIMIT, 12-MAKE-CHANGES

I T CHANGE CUSTOMER TEXT FIELD ? =—-=--—————m- *

INPUT MESSAGE "Y,5" INTC INPUT-FLAG
IF INPUT-FLAG = "Y" THEN

LET INPUT-FLAG = "TI"
ELSE

IF INPUT-FLAG = "“N" THEN

LET INPUT-FLAG = "'

ENDIF

ENDIF

11-ADD-REC
ADD 4S8CUST USING KEY CUST-CODE
LET TEXT-FLAG = "C"
DO 13-CHG-COMMENTS

72

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 45 SAMPLE Type: 1 Primary

Desc: SCRIPT-IV SAMPLE: Sales Script

Last Change Date: 11/26/88 Last Compile Date: 07/19/93
Time: 13:46:56 Time: 09:18:35

Page: 4

Date: 05/12/95

DATA CORRECT ?
INPUT MESSAGE "Y,3" INTO INPUT-FLAG
IF INPUT-FLAG = "N" THEN
LET 4STOPSC2.FIFID = 0
ELSE
IF TERM-KEY = 4 THEN
DELETE 4SCUST USING KEY CUST-CODE
ENDIF
ENDIF

12-MAKE-CHANGES

CHANGES CORRECT 7
INPUT MESSAGE "Y,4" INTO INPUT-FLAG
IF INPUT-FLAG <> "Y" THEN
LET 48STOPSC2.FIELD = O
FNDTF

DC TEXT FIELD DISPTAY OR
CHANGE OR ERASE
13-CHG-COMMENTS
RUN OVERLAY "45SAMPL4Y

14-GET=DETAIL
LET TEXT-FLAG = "E"
DO 13-CHG-COMMENTS
DIM AS(40), QO(4),
LET LINE-NUMBER = 1
DO LOGP UNTIL TERM-KEY = 4
DO 15-DETAIL-LINE
LET LINE-NUMBER =
IF LTINE-NUMBER = 5
LET TERM-KEY = 4
ENDIF
ENDLOOP
DO 19-DETAIL-CORRECT
LET A$ = umn

PO(4), TG(4), E0(4)

LINE=-NUMBER + 1
THEN

15-DETAIL-LINE

LET LO = LTINE-NUMBER,
QUANTITY = QO(L0),
4SSALDT.ITEM-CODE = A$(L0%10-9,10),
4SSALDT.BASE-PRICE = PO (L0)

INPUT SCREEN 4SBOTSCR LINE OFFSET LO-1
POST PROCESS ITEM-CODE, 16-VERIFY-ITEM
BASE-PRICE, 18-TAX-EXTENSTON

16-VERIFY-ITEM
LET Dog= wn,

IF TERM-KEY —

LET VIEW-FLAG =

ITEM-DESCRIPTION = "™
1 THEN
“Ill

73

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 4S5 SAMPLE Type: 1 Primary

Desc: SCRIPT-IV SAMPLE: Sales Script

Last Change Date: 11/26/88 Last Compile Date: 07/19/93
Time: 13:46:56 Time: 09:18:35

Page: 5

Date: 05/12/95

RUN OVERLAY "4SSAMPL3"
PRINT SCREEN 4SBOTSCR LINE OFFSET LO-1
DATA-NAME LIST ITEM-CODE
ENDIF
LET INPUT-FLAG = "
READ 4SINVEN USING 4SSALDT.ITEM-CODE
MISSING KEY PROCESS IS 17-MISSING-ITEM
IF INPUT-FLAG = "M" THEN
LET 4SBOTSCR.FIELD = 0
ELSE
LET DO$ = ITEM-DESCRIPTION,
A${10%*10-9,10) = 4SSALDT.ITEM-CODE,
4SSALDT.BASE-PRICE = 4SINVEN.BASE-PRICE
PRINT @(0,22),'CL’',
ENDTF

17-MISSING-ITEM
LET INPUT-FLAG = "M"

18-TAX-FXTFENSTON
LET QO0(LO) = QUANTITY , PO{I.0) = 4SSATDT.BASE-PRICE ,

EO = QO(L0) * PO(LO) , TO(LO) = ED * (TAX~RATE / 100),

EC(LO) = EO + TO(LO)

19~DETAIL-CORRECT
DO LOOP UNTIL INPUT-FLAG = "y©"

L e LT DETATL LINES CORRECT ? --—--

INPUT MESSAGE "Y,e" INTC INPUT-FLAG
IF INPUT~-FLAG = "N" THEN
DO LOGP UNTIL TERM-KEY = 4

L et ENTER LINE TO CHANGE OR DELETE

INPUT MESSAGE "I,3" INTO INPUT-FLAG
IF INPUT-FLAG = "D" THEN
DIM AS$ (LEN{AS))

I et T SET VARIABLES TO FORCE ENDLOOPS ==—==-= *

LET TERM-KEY = 4, INPUT-FIAG = "Y"
ENDIF
IF INPUT-FLAG => "1" AND INPUT-FLAG <= "4" THEN
LET LO = NUM(INPUT-FLAG)
IF AS$(LO%*10-9,10) <> " " THEN
LET LINE-NUMBER = 1.0
DO 15-DETAIL-LINE
ENDIF
ENDIF
ENDLOOP
ENDIF
ENDLOOP
DO LOQP CHANGING L0 FROM 1 TO 4
IF A$(L0O*10-9,10) <> " " THEN
LET SALES-TAX-AMT = TO(LO) ,
4SSALDT.CUST-CODE = 4SCUST,CUST-CODE,

74

Copyright © 2007 Thoroughbred Software International, Inc.

Script: 4S5 SAMPLE Type: 1 Primary

Desc: SCRIPT-IV SAMPLE: Sales Script Page: &
Last Change Date: 11/26/88 Last Compile Date: 07/19/93
Time: 13:46:56 Time: 09:18:35 Date: 05/12/95

4SSALDT. DISCOUNT-PERCENT = 4S8CUST.DISCOUNT-PERCENT,
4SSALDT. SALES-REP-CODE = 45SLSRP.SALES-REP-CODE,
4SSALDT. ITEM-CODE = AS$(L0O*10-9,10),
4SSALDT.BASE-PRICE = PO(L0), QUANTITY = QO(LO) ,
LINE-NUMBER = LO

e UPDATE SALE DETAIL FILE —-—-—-———————== *
ADD 4SSALDT USING KEY REFERENCE-NUMBER +
STR(LINE-NUMBER : "00")
DUPLLCATE KEY PROCESS IS 20-INC-REF-NUM

* AFTER UPDATING, CLEAR LINE ——-——————---- *
PRINT SCREEN 4SBOTSCR CLEAR DATA
LINE OFFSET LO-1
ENDLOOP

20-INC-REF-NUM
LET R$ = REFERENCE-NUMBER, R$(4,3) = STR(NUM(R$(4,3))+1) ,
REFERENCE-NUMBER = R$
ADD 4SSALDT USING KEY REFERENCE-NUMBER +
STR (LINE-NUMBER : "00™)

21-IGNORE

75

Copyright © 2007 Thoroughbred Software International, Inc.

	Introduction
	What is a Fourth Generation Language?
	IDOL-IV
	Overview of Thoroughbred Script˚IV
	Software Conventions
	How These Manuals are Organized
	Documentation Conventions
	Common Syntax Elements
	Masks (Output Formats)
	Thoroughbred Product Line
	Services Provided by TSI
	For More Information

	Creating Scripts
	The Script Editor
	How to Structure a Script
	Different Types of Scripts
	Script Execution Diagrams

	Script˚IV Tips and Techniques
	Terminal Keyboard Values
	Escape Processing
	Using Keys
	CONNECT Commands
	Database Maintenance and Script˚IV
	Interface to Thoroughbred Basic

	Compiling Scripts
	Introduction
	How to Compile from the Script Editor
	How to Compile from the IDOL˚IV Development Menu
	How to Use a Compile List
	How to Define Your Own Compile List
	How to Manage Compilation Errors
	Error Messages

	Sample Scripts

