
Thoroughbred® BasicTM
Technical Appendices

Version 8.7.0

285 Davidson Ave., Suite 302 • Somerset, NJ 08873-4153
Telephone: 732-560-1377 • Outside NJ 800-524-0430

Fax: 732-560-1594

Internet address: http://www.tbred.com

Published by:
Thoroughbred Software International, Inc.
285 Davidson Ave., Suite 302
Somerset, New Jersey 08873-4153

Copyright © 2009 by Thoroughbred Software International, Inc.

All rights reserved. No part of the contents of this document
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Document Number: BT8.7.0M102

The Thoroughbred logo, Swash logo, and Solution-IV Accounting logo, OPENWORKSHOP, THOROUGHBRED, VIP FOR
DICTIONARY-IV, VIP, VIPImage, DICTIONARY-IV, and SOLUTION-IV are registered trademarks of Thoroughbred
Software International, Inc.

Thoroughbred Basic, TS Environment, T-WEB, Script-IV, Report-IV, Query-IV, Source-IV, TS Network DataServer,
TS ODBC DataServer, TS ODBC R/W DataServer, TS ORACLE DataServer, TS DataServer, TS XML DataServer,
GWW, Gateway for Windows™, TS ChartServer, TS ReportServer, TS WebServer, TbredComm, WorkStation
Manager, Solution-IV Reprographics, Solution-IV ezRepro, TS/Xpress, and DataSafeGuard are trademarks of
Thoroughbred Software International, Inc.

Other names, products and services mentioned are the trademarks or registered trademarks of their respective vendors or
organizations.

Copyright © 2009 Thoroughbred Software International, Inc.

Preface

Thoroughbred Basic is a business BASIC designed to meet the needs of
developers who design, code, enhance, and maintain business
applications. The Thoroughbred Basic language is part of the
Thoroughbred Environment, part of the Thoroughbred 4GL
Environment, or part of the Thoroughbred OPENworkshop Environment.

The Thoroughbred Basic Technical Appendices contains information
appropriate to specialized needs and projects. This manual assumes
knowledge of Thoroughbred Basic and the concepts introduced in the
Thoroughbred Basic Developer Guide.

The Thoroughbred Basic Technical Appendices is a companion to the
Thoroughbred Basic Developer Guide. Both manuals are part of a
Thoroughbred Software International documentation library that includes
the Thoroughbred Basic Language Reference, the Thoroughbred Basic
Quick Reference Guide, the Thoroughbred Basic Installation and
Upgrade Guide, the Thoroughbred Basic Customization and Tuning
Guide, and the Thoroughbred Basic Utilities Manual.

Copyright © 2009 Thoroughbred Software International, Inc.

Notational Symbols

BOLD FACE/UPPERCASE Commands or keywords you must code exactly as shown. For example,
CONNECT VIEWNAME.

Italic Face Information you must supply. For example, CONNECT viewname. In
most cases, lowercase italics denotes values that accept lowercase or
uppercase characters.

UPPERCASE ITALICS Denotes values you must capitalize. For example, CONNECT
VIEWNAME.

Underscores Displays a default in a command description or a default in a screen
image.

Brackets [] You can select one of the options enclosed by the brackets; none of the
enclosed values is required. For example, CONNECT
[VIEWNAME|viewname].

Vertical Bar | Piping separates options. One vertical bar separates two options, two
vertical bars separate three options. You can select only one of the
options

Braces { } You must select one of the options enclosed by the braces. For example,
CONNECT {VIEWNAME|viewname}.

Ellipsis . . . You can repeat the word or clause that immediately precedes the ellipsis.
For example, CONNECT {viewname1}[[, viewname2] . . .].

lowercase displays information you must supply, for example, SEND filename.txt.

Brackets [] are part of the syntax and must be included. For example, SEND
[filename.txt] means that you must type the brackets to execute the
command.

punctuation such as , (comma), ; (semicolon), : (colon), and () (parentheses), are part
of the syntax and must be included.

1
Copyright © 2009 Thoroughbred Software International, Inc.

ASCII Code Chart
ASCII Hex ASCII Hex ASCII Hex
Value Value Character Value Value Character Value Value Character

000 00H NUL 022 16H SYN 044 2CH ,

001 01H SOH 023 17H ETB 045 2DH -

002 02H STX 024 18H CAN 046 2EH .

003 03H ETX 025 19H EM 047 2FH /

004 04H EOT 026 1AH SUB 048 30H 0

005 05H ENQ 027 1BH ESC 049 31H 1

006 06H ACK 028 1CH FS 050 32H 2

007 07H BEL 029 1DH OS 051 33H 3

008 08H BS 030 1EH RS 052 34H 4

009 09H HT 031 1FH US 053 35H 5

010 0AH LF 032 20H SPACE 054 36H 6

011 0BH VT 033 21H ! 055 37H 7

012 0CH FF 034 22H " 056 38H 8

013 0DH CR 035 23H # 057 39H 9

014 0EH SO 036 24H $ 058 3AH :

015 0FH SI 037 25H % 059 3BH ;

016 10H DLE 038 26H & 060 3CH <

017 11H DC1 039 27H ' 061 3DH =

018 12H DC2 040 28H (062 3EH >

019 13H DC3 041 29H) 063 3FH ?

020 14H DC4 042 2AH * 064 40H @

021 15H NAK 043 2BH + 065 41H A

2
Copyright © 2009 Thoroughbred Software International, Inc.

ASCII Hex ASCII Hex ASCII Hex
Value Value Character Value Value Character Value Value Character

066 42H B 087 57H W 108 6CH l

067 43H C 088 58H X 109 6DH m

068 44H D 089 59H Y 110 6EH n

069 45H E 090 5AH Z 111 6FH o

070 46H F 091 5BH [112 70H p

071 47H G 092 5CH \ 113 71H q

072 48H H 093 5DH] 114 72H r

073 49H I 094 5EH ^ 115 73H s

074 4AH J 095 5FH _ 116 74H t

075 4BH K 096 60H ' 117 75H u

076 4CH L 097 61H a 118 76H v

077 4DH M 098 62H b 119 77H w

078 4EH N 099 63H c 120 78H x

079 4FH O 100 64H d 121 79H y

080 50H P 101 65H e 122 7AH z

081 51H Q 102 66H f 123 7BH {

082 52H R 103 67H g 124 7CH |

083 53H S 104 68H h 125 7DH }

084 54H T 105 69H i 126 7EH ~

085 55H U 106 6AH j 127 7FH DEL

086 56H V 107 6BH k

3
Copyright © 2009 Thoroughbred Software International, Inc.

External Call (XCALL) Technical Specifications
The XCALL directive enables Thoroughbred Basic programs to directly interact with system and
user-defined libraries through the Dynamic Link Library (DLL) interface. After the interface is set up and
initialized Thoroughbred Basic programs can call library functions, pass data to these functions, and
receive data from these functions.

To use XCALL, your operating system must support DLL calls:

• Under UNIX systems this feature is usually implemented by the DLOPEN, DLCLOSE, and DLSYM
library routines, which are available in ATT/UNIVEL SYSTEM V Release 4, and OSF systems.

• Under Microsoft Windows operating systems this feature is standard.

• Under OPEN VMS operating systems this feature is available through the
LIB$FIND_IMAGE_SYMBOL library interface.

Most of the information in this chapter is specific to the UNIX operating system.

How to set up and initialize your system

You will need at least one DLL and you will need to define references to the DLLs you plan to make
available to the XCALL directive. The following subsections describe these requirements.

DLLs

XCALL can call any defined function in a DLL, provided that the function uses the C language calling
interface. If your DLLs were created by a C compiler, the functions will be available to XCALL.
PASCAL libraries, Fortran libraries, and libraries created by other compilers will be available only if the
functions in these libraries conform to the C function calling conventions specific to your operating
system.

DLLs can be provided by the operating system or by a programmer:

• XCALL can call functions in DLLs that are provided as part of an operating system.

• XCALL can call functions in user-defined DLLs. The DLLs must operate under the constraints of the
operating system.

For more information on system-provided DLLs and on how to create DLLs, please refer to the
documentation for your operating system. If you plan to create DLLs you may need to pay special
attention to the descriptions of the cc, ld, and loader programs.

4
Copyright © 2009 Thoroughbred Software International, Inc.

Variable definitions

Thoroughbred Basic needs to know which DLLs you plan to use. You must create references to libraries
you plan to call before you execute Thoroughbred Basic. To create the references you must define the
TBRED_EXTERNAL environment variable in one of the following ways:

• Under UNIX, TBRED_EXTERNAL is a shell environment variable that contains the names of DLLs
that contain functions you plan to call. Separate the names of DLLs with a : (colon).

Some UNIX systems will require you to define the LD_LIBRARY_PATH shell variable in addition
to the TBRED_EXTERNAL variable. The UNIX DLOPEN routine uses the information in this
variable to find the directories that contain DLLs.

For more information on shell environment variables please refer to the documentation for your
operating system.

• Under Microsoft Windows, TBRED_EXTERNAL is an Environment Variable that contains the
names of DLLs that contain functions you plan to call. Separate the DLL names with a ; (semicolon).
Full path names may be used. If a path name contains a space, tab or semicolon the entire name must
be enclosed in double quotes.

Refer to Microsoft documentation of the LoadLibrary function for details on how DLLs are located
by the operating system. Refer to the operating system Help for information on setting Environment
Variables.

• Under OPEN VMS, TBRED_EXTERNAL is a logical definition. For more information on how to
create a logical definition please refer to the OPEN VMS documentation.

When Thoroughbred Basic executes the first instance of XCALL, it loads all of the DLLs defined by
TBRED_EXTERNAL into shared memory. If a DLL cannot be located and loaded, all attempts to call a
function in that DLL will generate an error.

How to use the XCALL directive

The following description of XCALL syntax expands on the description contained in the Thoroughbred
Basic Language Reference:

XCALL function-name [,ERR=line-ref|,ERC=numeric-value] [,format-string, arg1[, arg2] . . .]

function-name is the name of the DLL function you plan to call. Valid values are the ASCII names of
functions. You cannot specify the ordinal numbers associated with DLL functions.

No case translation is performed, so the function-name must exactly match the name of
the DLL function. If the function is not contained in any of the DLLs specified in
TBRED_EXTERAL, Thoroughbred Basic will generate an ERR=12.

line-ref is the program line number or label to branch to if this directive produces an error. If you
plan to include an error processing routine the ERR= clause must follow function-name.

5
Copyright © 2009 Thoroughbred Software International, Inc.

format-string specifies how Thoroughbred Basic will pass each of the following arguments to the
called library function. The format string must be enclosed by quotation marks. You must
specify one format definition for each argument. Each format definition is a field
separated from the next field by a , (comma). The first format definition specifies how the
first argument (arg1) will be passed; the second format definition specifies how the
second argument (arg2) will be passed, and so on.

The format definition field is specified in the following way:

method[:type]

method specifies how the argument will be passed. Specify one of the following valid
values:

D specifies that the argument will be passed by an OPEN VMS descriptor.

R specifies that the argument will be passed by reference.

V specifies that the argument will be passed by value.

[:type] is provided for OPEN VMS compatibility. It is not required for most uses of the
XCALL directive. Valid values are:

Z unspecified data type
BU single byte unsigned integer
WU word (two bytes) unsigned integer
LU longword (four bytes) unsigned integer
QU quadword (eight bytes) unsigned integer
OU octaword (sixteen bytes) unsigned integer
B byte, signed integer
W word (two bytes) signed integer
L longword (four bytes) signed integer
Q quadword (eight bytes) signed integer
O octaword (sixteen bytes) signed integer
F F_floating (four bytes) (OPEN VMS FPU-specific)
D D_floating (eight bytes) (OPEN VMS FPU-specific)
G G_floating (eight bytes) (OPEN VMS FPU-specific)
H H_floating (sixteen bytes) (OPEN VMS FPU-specific)
T fixed string size

If there are more format definitions than arguments, Thoroughbred Basic will ignore the
extra format definitions. If there are fewer format definitions than arguments,
Thoroughbred Basic will generate an ERR=17.

arg1, arg2, . . . are the Thoroughbred Basic variables that will be passed to the called library function.
Make sure that the format of each argument is specified in the preceding format-string.

6
Copyright © 2009 Thoroughbred Software International, Inc.

For now, XCALL only passes strings and signed integers. Strings can be any length, but
signed integers can only occupy up to 32 bits. If the passed number is too large
Thoroughbred Basic will generate an error. To pass numbers that occupy more than 32
bits, or numbers that contain a decimal point, convert the number to a string. Make sure
that the function called by XCALL expects such a number to be received as a string.

Under UNIX you can pass up to 16 arguments to the function called by XCALL, and you
can pass up 12,288 bytes in one call. Under Microsoft Windows you can pass up to 20
arguments and up 12,288 bytes in one call. Under OPEN VMS you can pass up to 256
arguments, and there is no upper limit to the number of bytes you can pass.

The XCALL directive manages string arguments and numeric arguments in the following
ways:

String Arguments

Thoroughbred Basic knows the lengths of its string variables at all times. The C language
is more flexible, but many implementations expect their string functions to manage
null-terminated strings. In general, the XCALL directive and the function it calls must
agree that a passed string is composed of a given number of characters.

The function called by XCALL cannot change the length of the string, but the function
can change the characters or values in the string:

• Arguments passed by value will contain the same value after control returns to the
Thoroughbred Basic program. The called function can change the value of the string
argument, but the change will not be reflected in the Thoroughbred Basic program.

If a string argument is passed by value it will occupy 32 bits. Only strings that are
four bytes long or smaller can be passed by value. The function called by XCALL
must be able to decipher the 32-bit format.

• Arguments passed by reference do not have to contain the same value after control
returns to the Thoroughbred Basic program. The called function can change the value
of the string argument and the change will be reflected in the Thoroughbred Basic
program.

A string argument passed by reference can be any length. If you want a change in
string value to be reflected in the calling program you must pass the string in a string
variable.

If you use the D (pass by descriptor) option then the [:type] of the field defaults to T. If
you plan to use this option in a UNIX environment you must be familiar with how OPEN
VMS passes arguments by descriptor.

Numeric Arguments

Thoroughbred Basic provides several forms of numeric representation:

OPDPI represents a 32-bit signed integer

7
Copyright © 2009 Thoroughbred Software International, Inc.

OPFIX represents a 32-bit signed integer with an assumed decimal place between the
100's and 10's places.

OPFLT represents an eight-byte value. The first byte contains the operand type, the
second byte contains a sign bit and a 7-bit excess 128 exponent value, and
the remaining six bytes contain a 48-bit mantissa.

For now, XCALL can only pass signed integers that can occupy up to 32 bits. To pass
numbers that occupy more than 32 bits, or numbers that contain a decimal point, convert
the number to a string. Make sure that the function called by XCALL expects such a
number to be received as a string.

Numeric arguments can be passed by value or passed by reference:

• Arguments passed by value will contain the same value after control returns to the
Thoroughbred Basic program. The called function can change the value of the
numeric argument, but the change will not be reflected in the Thoroughbred Basic
program.

If a numeric argument is passed by value it will occupy 32 bits. The function called
by XCALL must be able to decipher the 32-bit format. OPDPI and OPFIX values can
be passed by value but OPFLT values cannot.

• Arguments passed by reference do not have to contain the same value after control
returns to the Thoroughbred Basic program. The called function can change the value
of the numeric argument and the change will be reflected in the Thoroughbred Basic
program.

If a numeric argument is passed by reference it will occupy 32 bits. If you want a
change in numeric value to be reflected in the calling program you must pass the
value in a numeric variable. The function called by XCALL must be able to decipher
the 32-bit format. OPDPI and OPFIX values can be passed by reference but OPFLT
values cannot.

If you plan to use the D (pass by descriptor) option in a UNIX environment you must be
familiar with how OPEN VMS passes arguments by descriptor.

How to manage return values

By convention, C functions use the return statement to return a value to a calling program. Returned
values are 32 bits long. DFLOAT values will be truncated. Thoroughbred Basic stores the return value.
You can use option 3 of the Thoroughbred Basic TCB function to retrieve the return value from the
function called by the XCALL directive.

Examples

The following sets of examples will show you how to create DLLs, how to and specify shell environment
variables so that Thoroughbred Basic can recognize DLLs, and how to use the XCALL directive to call
DLL functions. The examples in this section are specific to UNIX operating systems.

8
Copyright © 2009 Thoroughbred Software International, Inc.

How to create DLLs

1. You can create the following DLL under the UNIVEL V Release 4 operating system:

ed
a
test1_call(value)
 int value;
{
 value = value + 1;
 return(value);
}
.
w test1.c
q
cc -K -PIC -G -o test1.so test1.c

In this example, the ed editor is used to create a simple C function, which is written to the test1.c file.
The test1_call function receives a value, adds 1 to the value, and uses the return command to return
the value. The cc program and, implicitly, the ld program are used to compile the test1_call function
and create the test1.so DLL.

2. You can create the following DLL on the OSF/1 operating system on a DEC Alpha machine:

ed
a
test2_call(s,i,p,j)
 int i, j; /* Variables i and j are integers */
 char *s, *p; /* Variables s and p are pointers */
{ /* that are passed by reference */
 int max, k; /* Max # of characters to process */
 max = (i < j) ? i:j; /* Get lower value of i or j */
 for (k=max; k; k--) { /* Do until max = 0 */
 *p = *s; /* Get char pointed to by s, and */
 /* store it in the location */
 /* pointed to by p */
 if (isupper(*p)) /* Determine if the stored */
 /* character is uppercase */
 *p = tolower(*s); /* If it is, make it lowercase */
 p++; /* Add 1 to p pointer address */
 s++; /* Add 1 to s pointer address */
 }
 return(max); /* Return # of characters processed*/
}
.
w test2.c
q
cc -c -O test2.c
ld -all -shared -o test2.so test2.o

This example contains the test2_call function, which converts uppercase characters into their
corresponding lowercase characters. The s and p arguments are pointers to the values passed by
reference. The i and j variables are integers that receive values passed by value.

The DLL is created in two steps. First, the cc compiler creates the C object code. Next, the ld program
creates the DLL.

9
Copyright © 2009 Thoroughbred Software International, Inc.

The ld program may encounter undefined references, which are routines that the ld program cannot
find. In most cases, you can ignore them. During the initial XCALL loading process undefined
references may be located because they may be part of some other DLL that XCALL loads. For more
information on how to manage DLLs and undefined references please refer to system documentation
on the cc, ld, and loader programs.

3. You can create a multi-function DLL under the UNIVEL V Release 4 operating system:

ed
a
test3_add(value1, value2)
 int value1;
 int value2;
{
 value1 = value1 + value2;
 return(value1);
}
test3_sub(value1, value2)
 int value1;
 int value2;
{
 value1 = value1 - value2;
 return(value1);
}
test3_mult(value1, value2)
 int value1;
 int value2;
{
 value1 = value1 * value2;
 return(value1);
}
test3_div(value1, value2)
 int value1;
 int value2;
{
 if (value2 == 0) return(0); /* Attempt to divide by zero */
 value1 = value1 / value2;
 return(value1);
}
.
w test3.c
q
cc -K -PIC -G -o test3.so test3.c

This example contains four functions that perform addition, subtraction, multiplication, or division using
two numeric values. The functions are compiled as a single entity and made into a single DLL. XCALL
can call any one of these functions.

4. The following files can be used to create a DLL using Microsoft’s Visual C++ Version 6 to be used
on Microsoft Windows operating systems. The resulting xcallsample.dll contains all of the functions
described in the preceding test1, test2, and test3 examples. When you have created the DLL, set up a
TBRED_EXTERNAL Environment Variable as described earlier in this sectionand test using the
Thoroughbred Basic program from example 4 earlier in this section.

10
Copyright © 2009 Thoroughbred Software International, Inc.

File xcallsample.c

/*
** sample functions to test xcall
*/
#include <ctype.h>

test1_call(value)
 int value;
{
 value = value + 1;
 return(value);
}

test2_call(s,i,p,j)
 int i, j; /* Variables i and j are integers */
 char *s, *p; /* Variables s and p are pointers */
{ /* that are passed by reference */
 int max, k; /* Max # of characters to process */
 max = (i < j) ? i:j; /* Get lower value of i or j */
 for (k=max; k; k--) { /* Do max characters */
 *p = *s; /* Get char pointed to by s, and */
 /* store it in the location */
 /* pointed to by p */
 if (isupper(*p)) /* Determine if the stored */
 /* character is uppercase */
 *p = tolower(*s); /* If it is, make it lowercase */
 p++; /* Add 1 to p pointer address */
 s++; /* Add 1 to s pointer address */
 }
 return(max); /* Return # of characters processed*/
}

test3_add(value1, value2)
 int value1;
 int value2;
{
 value1 = value1 + value2;
 return(value1);
}

test3_sub(value1, value2)
 int value1;
 int value2;
{
 value1 = value1 - value2;
 return(value1);
}

test3_mult(value1, value2)
 int value1;
 int value2;
{
 value1 = value1 * value2;
 return(value1);
}

test3_div(value1, value2)
 int value1;
 int value2;
{
 if (value2 == 0) return(0); /* Attempt to divide by zero */
 value1 = value1 / value2;
 return(value1);
}

11
Copyright © 2009 Thoroughbred Software International, Inc.

File xcallsample.def

LIBRARY XCALLSAMPLE
DESCRIPTION 'Sample XCALL DLL for Windows'
HEAPSIZE 1024
EXPORTS
test1_call
test2_call
test3_add
test3_sub
test3_mult
test3_div

12
Copyright © 2009 Thoroughbred Software International, Inc.

File xcallsample.rc

//Microsoft Developer Studio generated resource script.
//

#define APSTUDIO_READONLY_SYMBOLS
///
//
// Generated from the TEXTINCLUDE 2 resource.
//
#define APSTUDIO_HIDDEN_SYMBOLS
#include "windows.h"
#undef APSTUDIO_HIDDEN_SYMBOLS

///
#undef APSTUDIO_READONLY_SYMBOLS

///
// English (U.S.) resources

#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
#pragma code_page(1252)
#endif //_WIN32

#ifndef _MAC
///
//
// Version
//

VS_VERSION_INFO VERSIONINFO
 FILEVERSION 1,0,0,0
 PRODUCTVERSION 1,0,0,0
 FILEFLAGSMASK 0x3fL
#ifdef _DEBUG
 FILEFLAGS 0x1L
#else
 FILEFLAGS 0x0L
#endif
FILEOS 0x40004L
 FILETYPE 0x1L
 FILESUBTYPE 0x0L
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904b0"
 BEGIN
 VALUE "FileDescription", "Thoroughbred XCALL Sample DLL\0"
 VALUE "FileVersion", "01/13/2004\0"
 VALUE "OriginalFilename", "XCALLSAMPLE.DLL\0"
 VALUE "CompanyName", "Thoroughbred Software International, Inc.\0"
 VALUE "ProductName", "Thoroughbred Environment\0"
 VALUE "ProductVersion", "8.5.1+\0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1200
 END
END
#endif // !_MAC
#endif // English (U.S.) resources
///

13
Copyright © 2009 Thoroughbred Software International, Inc.

File xcallsample.dsp

Microsoft Developer Studio Project File - Name="xcallsample" - Package Owner=<4>
Microsoft Developer Studio Generated Build File, Format Version 6.00
** DO NOT EDIT **

TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102

CFG=xcallsample - Win32 Release
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "xcallsample.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE
!MESSAGE NMAKE /f "xcallsample.mak" CFG="xcallsample - Win32 Release"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "xcallsample - Win32 Release" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE "xcallsample - Win32 Debug" (based on "Win32 (x86) Dynamic-Link Library")
!MESSAGE

Begin Project
PROP AllowPerConfigDependencies 0
PROP Scc_ProjName ""
PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe

!IF "$(CFG)" == "xcallsample - Win32 Release"

PROP BASE Use_MFC 0
PROP BASE Use_Debug_Libraries 0
PROP BASE Output_Dir ".\WinRel"
PROP BASE Intermediate_Dir ".\WinRel"
PROP Use_MFC 0
PROP Use_Debug_Libraries 0
PROP Output_Dir "Release"
PROP Intermediate_Dir "Release"
PROP Ignore_Export_Lib 0
ADD BASE CPP /nologo /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /FR /YX /c
ADD CPP /nologo /Zp1 /MT /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /YX /FD /c
SUBTRACT CPP /Fr
ADD BASE MTL /nologo /D "NDEBUG" /win32
ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32
ADD BASE RSC /l 0x409 /d "NDEBUG"
ADD RSC /l 0x409 /d "WIN32" /d "NDEBUG"
BSC32=bscmake.exe
ADD BASE BSC32 /nologo
ADD BSC32 /nologo
LINK32=link.exe
ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib
shell32.lib ole32.lib oleaut32.lib uuid.lib /nologo /subsystem:windows /dll /machine:I386
ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib
ole32.lib oleaut32.lib uuid.lib /nologo /version:4.0 /subsystem:windows /dll /pdb:none /map
/machine:I386

14
Copyright © 2009 Thoroughbred Software International, Inc.

File xcallsample.dsp

!ELSEIF "$(CFG)" == "xcallsample - Win32 Debug"

PROP BASE Use_MFC 0
PROP BASE Use_Debug_Libraries 1
PROP BASE Output_Dir ".\WinDebug"
PROP BASE Intermediate_Dir ".\WinDebug"
PROP Use_MFC 0
PROP Use_Debug_Libraries 1
PROP Output_Dir "Debug"
PROP Intermediate_Dir "Debug"
PROP Ignore_Export_Lib 0
ADD BASE CPP /nologo /MT /W3 /GX /Zi /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /FR /YX /c
ADD CPP /nologo /Zp1 /MTd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /YX /FD /c
SUBTRACT CPP /Fr
ADD BASE MTL /nologo /D "_DEBUG" /win32
ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32
ADD BASE RSC /l 0x409 /d "_DEBUG"
ADD RSC /l 0x409 /d "WIN32" /d "_DEBUG"
BSC32=bscmake.exe
ADD BASE BSC32 /nologo
ADD BSC32 /nologo
LINK32=link.exe
ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib
shell32.lib ole32.lib oleaut32.lib uuid.lib /nologo /subsystem:windows /dll /debug /machine:I386
ADD LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib
ole32.lib oleaut32.lib uuid.lib /nologo /version:4.0 /subsystem:windows /dll /debug /machine:I386
SUBTRACT LINK32 /incremental:no
!ENDIF

Begin Target

Name "xcallsample - Win32 Release"
Name "xcallsample - Win32 Debug"
Begin Group "Source Files"

PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;hpj;bat;for;f90"
Begin Source File

SOURCE=.\xcallsample.c
End Source File
Begin Source File

SOURCE=.\xcallsample.def
End Source File
Begin Source File

SOURCE=.\xcallsample.rc
End Source File
End Group
Begin Group "Header Files"

PROP Default_Filter "h;hpp;hxx;hm;inl;fi;fd"
End Group
Begin Group "Resource Files"

PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;cnt;rtf;gif;jpg;jpeg;jpe"
End Group
End Target
End Project

How to specify environment variables

You can set up UNIX shell environment variables so that Thoroughbred Basic can recognize and load the
DLLs that contain functions you plan to call:

 TBRED_EXTERNAL=test.so:libc.so:libnsl.so
 export TBRED_EXTERNAL
 LD_LIBRARY_PATH=.;/usr/lib
 export LD_LIBRARY_PATH

15
Copyright © 2009 Thoroughbred Software International, Inc.

In this example, the TBRED_EXTERNAL and LD_LIBRARY_PATH shell environment variables are
created:

1. The TBRED_EXTERNAL shell variable specifies three DLLs that will be loaded into shared
memory when the first instance of the XCALL directive executes. The test.so DLL is a user-defined
DLL. The libc.so and libnsl.so are C runtime packages usually found in the /usr/lib directory.

2. The export command tells the shell that TBRED_EXTERNAL will be passed to all child processes
created by this shell.

3. The LD_LIBRARY_PATH shell variable specifies a list of directories that contain the DLLs
specified in the TBRED_EXTERNAL variable. For more information on this shell variable please
refer to your operating system documentation. In some cases, this documentation will be included in
the description of the loader utility.

4. The export command tells the shell that LD_LIBRARY_PATH will be passed to all child processes
created by this shell.

The shell will permanently keep these variables. They will not be changed until the owner decides to
modify or delete them. To review the names of the functions and print other information about the DLLs
you can use the nm program.

After these commands are executed under UNIX you can start Thoroughbred Basic. The Thoroughbred
Basic XCALL directive can call any of the functions in the three DLLs.

You can set up Microsoft Windows environment variables in the System Properties dialog. To locate
System Properties right-click on My Computer and select Properties or go to the Control Panel and
select System. Next select the Advanced tab and then press the Environment Variables button. In the
Environment Variables display you can add or edit variables for both yourself and the entire system. Your
choice depends on who will be using XCALL. The Variable Name is TBRED_EXTERNAL. The
Variable Value is the name of your DLL including the path if necessary. For example:
C:\XCALL\Debug\xcallsample.dll. Note that changes do not affect applications already running,
including Visual C++ and Thoroughbred Basic.

How to use the XCALL directive

1. You can use the Thoroughbred Basic XCALL directive to call the function defined in the first
example in earlier in this subsection:

16
Copyright © 2009 Thoroughbred Software International, Inc.

TBRED_EXTERNAL=test1.so
export TBRED_EXTERNAL
LD_LIBRARY_PATH=.
export LD_LIBRARY_PATH

basic IPLINPUT

0010 FOR I=1 TO 50 STEP 2; XCALL "test1_call",ERR=999,"V",I
0020 IF TCB(3) <> I+1 THEN M$="The XCALLed function test1_call
0020: did not return the correct results"; EXITTO 8000
0030 NEXT I
0040 PRINT "Finished testing XCALL"; GOTO 9000
0999 M$="XCALL failed to complete its task"; EXITTO 8000
8000 PRINT M$
9000 END

This example contains three steps:

1. The shell environment variables are defined. The TBRED_EXTERNAL variable contains the
name of the test1.so DLL, which is described in the first example earlier in this subsection. The
LD_LIBRARY_PATH variable contains the name of the current directory. The export commands
make both variables available to all of the programs run under the shell.

2. Thoroughbred Basic is started. This command specifies the default IPL file.

3. A Thoroughbred Basic program is written and executed:

• Line 10 uses the XCALL directive to call the test1_call function. The numeric variable is
passed by value to the function.

If the DLL cannot be found, if the function cannot be found within the DLL, or if the
argument is invalid, Thoroughbred Basic will use the ERR= option to process errors. You
cannot use the ERR= option to find or process errors generated by the external function.

If the DLL function is found the value contained in the variable will be contained in the value
variable of the test1_call function.

• If the XCALL directive succeeded the test1_call function can process the value contained in
its value variable.

• When the test1_call function has finished, it will use the return(value) command to return the
value of the value variable to Thoroughbred Basic. Line 20 uses option 3 of the TCB function
to retrieve that number.

2. You can use the Thoroughbred Basic XCALL directive to call the function defined in the second
example earlier in this subsection:

17
Copyright © 2009 Thoroughbred Software International, Inc.

TBRED_EXTERNAL=test2.so
export TBRED_EXTERNAL
LD_LIBRARY_PATH=.
export LD_LIBRARY_PATH

basic IPLINPUT

0005 DIM X$(3*1024,$00$)
0010 OPEN(1,OPT="TEXT") "Ascii_File"
0012 TEXT "Lower_case",0,0 ; OPEN(2,OPT="TEXT") "Lower_case"
0020 READ (1,END=999) A$
0030 XCALL "test2_call",ERR=998,"R,V,R,V",A$,STL(A$),X$,STL(X$)
0040 IF(TCB(3) > 0) THEN WRITE(2) X$(1,TCB(3))
0050 GOTO 20
0998 PRINT "XCALL got an error ", ERR,",",ERM(ERR)
0999 CLOSE(1); CLOSE(2)
9000 END

This example contains three steps:

1. The shell environment variables are defined. The TBRED_EXTERNAL variable contains the
name of the test2.so DLL, which is described in the second example earlier in this subsection.
The LD_LIBRARY_PATH variable contains the name of the current directory. The export
commands make both variables available to all of the programs run under the shell.

2. Thoroughbred Basic is started. This command specifies the default IPL file.

3. A Thoroughbred Basic program is written and executed:

• Line 5 uses the DIM directive to create and initialize a fixed storage variable. The X$
variable is 3*1024 characters long.

• Line 10 opens an external TEXT file on channel 1. This file contains characters.

• Line 12 creates and opens an external TEXT file on channel 2. This file will receive output.

• Line 20 uses the READ directive to read one line from the file open on channel 1 and store
the line in the A$ string variable. In this case, a line is a string of characters terminated by a
line-feed character.

If there are no more characters left to read, the Thoroughbred Basic program will branch to
line 999.

• Line 30 uses the XCALL directive to call the test2_call function. Arguments are passed in the
following order:

1. The A$ variable is passed by reference.
2. The length of the A$ variable, specified as STL(A$), is passed by value.
3. The X$ variable is passed by reference.
4. The length of the X$ variable, specified as STL(X$), is passed by value.

If the DLL cannot be found, if the function cannot be found within the DLL, or if the
argument is invalid, Thoroughbred Basic will use the ERR= option to process errors. You
cannot use the ERR= option to trap or process errors generated by the external function.

18
Copyright © 2009 Thoroughbred Software International, Inc.

If the DLL function is found the values contained in the four variables will be contained in
the corresponding variables in the test2_call function.

• If the XCALL directive succeeded the test2_call function will convert any uppercase
characters in the A$ variable into their lowercase equivalents.

• When the test2_call function has finished, it will use the return command to return the
number of characters it processed. This number is the number of characters stored in the X$
variable.

• Line 40 uses option 3 of the TCB function to retrieve the number of characters that test2_call
processed. If characters were processed they will be written to the output TEXT file open on
channel 2.

Lines 20 through 50 will be repeated until all of the characters in the TEXT file open on channel 1 have
been read. After the characters have been processed and put in the TEXT file open on channel 2,
Thoroughbred Basic will close the TEXT files and end the program.

3. You can use the Thoroughbred Basic XCALL directive to call the functions defined in the third
example earlier in this subsection:

TBRED_EXTERNAL=test3.so
export TBRED_EXTERNAL
LD_LIBRARY_PATH=.
export LD_LIBRARY_PATH

basic IPLINPUT

0010 XCALL "test3_add","V,V",1,5;
0010 : IF TCB(3) <> 6 THEN GOTO GOT_ERR
0020 XCALL "test3_sub","V,V",5,1;
0020 : IF TCB(3) <> 4 THEN GOTO GOT_ERR
0030 XCALL "test3_mult","V,V",32,5;
0030 : IF TCB(3) <> 32*5 THEN GOTO GOT_ERR
0040 XCALL "test3_div","V,V",9,2;
0040 : IF TCB(3) <> INT(9/2) THEN GOTO GOT_ERR
0100 PRINT "Done Testing"
0110 GOTO 9000
8000 GOT_ERR: REM
8010 PRINT "Function failed to return proper value"
9000 END

This example contains three steps:

1. The shell environment variables are defined. The TBRED_EXTERNAL variable contains the
name of the test3.so DLL, which is described in the third example earlier in this subsection. The
LD_LIBRARY_PATH variable contains the name of the current directory. The export commands
make both variables available to all of the programs run under the shell.

2. Thoroughbred Basic is started. This command specifies the default IPL file.

3. A Thoroughbred Basic program is written and executed:

19
Copyright © 2009 Thoroughbred Software International, Inc.

• Lines 10 through 40 use the XCALL directive to call the test3_add, test3_sub, test3_mult,
and test3_div functions in the test3.so DLL. Each function accepts two arguments. The
arguments in this example are numeric constants passed by value.

• If the XCALL directives and the called functions execute successfully the value generated by
the function will be returned to Thoroughbred Basic by the function's return command. The
TCB(3) statement will retrieve the returned values.

4. You can write one program that enables you to use the Thoroughbred Basic XCALL directive to call
all of the functions defined in all of the examples earlier in this subsection:

TBRED_EXTERNAL=test3.so:test2.so:test1.so
export TBRED_EXTERNAL
LD_LIBRARY_PATH=.
export LD_LIBRARY_PATH

basic IPLINPUT

0010 XCALL "test3_add","V,V",1,5;
0010 : IF TCB(3) <> 6 THEN GOTO GOT_ERR
0020 XCALL "test3_sub","V,V",5,1;
0020 : IF TCB(3) <> 4 THEN GOTO GOT_ERR
0030 XCALL "test3_mult","V,V",32,5;
0030 : IF TCB(3) <> 32*5 THEN GOTO GOT_ERR
0040 XCALL "test3_div","V,V",9,2;
0040 : IF TCB(3) <> INT(9/2) THEN GOTO GOT_ERR
0050 XCALL "test1_call","V",7;
0050 : IF TCB(3) <> 8 THEN GOTO GOT_ERR
0060 A$="This Is All Lower Case"; Z$=A$;
0060: XCALL "test2_call","R,V,R,V",A$,STL(A$),Z$,STL(Z$);
0060: IF Z$ <> "this is all lower case" THEN GOTO GOT_ERR
0100 PRINT "Done Testing"
0110 GOTO 9000
8000 GOT_ERR: REM
8010 PRINT "Function failed to return proper value"
9000 END

This example contains three steps:

1. The shell environment variables are defined. The TBRED_EXTERNAL variable contains the
name of the test3.so, test2.so, and test1.so DLLs, which are described in the examples earlier in
this subsection. The LD_LIBRARY_PATH variable contains the name of the current directory.
The export commands make both variables available to all of the programs run under the shell.

2. Thoroughbred Basic is started. This command specifies the default IPL file.

3. A Thoroughbred Basic program is written and executed:

• Line 10 contains the first instance of the XCALL directive. If this directive is valid
Thoroughbred Basic will load all of the DLLs specified in the TBRED_EXTERNAL variable
into shared memory. All of the functions contained in the DLLs will be available to
Thoroughbred Basic.

20
Copyright © 2009 Thoroughbred Software International, Inc.

• Lines 10 through 40 use the XCALL directive to call the test3_add, test3_sub, test3_mult,
and test3_div functions in the test3.so DLL. Each function accepts two arguments. All of the
arguments in this example are numeric constants passed by value.

• Line 50 uses the XCALL directive to call the test1_call function in the test1.so DLL. The
argument is a numeric constant passed by value.

• Line 60 uses the XCALL directive to call the test2_call function in the test2.so DLL: This
function enables you to convert uppercase characters to their lowercase equivalents in the
following way:

1. The A$ variable is created and initialized with the "This Is All Lower Case" string.

2. The Z$ variable receives the value contained in the A$ variable.

3. The XCALL directive calls the test2_call function. Arguments are passed in the
following order:

• The A$ variable is passed by reference.
• The length of the A$ variable, specified as STL(A$), is passed by value.
• The Z$ variable is passed by reference.
• The length of the X$ variable, specified as STL(Z$), is passed by value.

4. If the XCALL directive succeeded the test2_call function will convert any uppercase
characters in the A$ variable into their lowercase equivalents. The converted string will
be placed in the test2_call function variable that corresponds to the Z$ variable.

5. When the test2_call function has finished, Thoroughbred Basic will use an IF directive to
make sure that the conversion was successful.

21
Copyright © 2009 Thoroughbred Software International, Inc.

VFU Loading
VFU can be loaded and utilized through the following mnemonic codes:

'SL' - Start Load

'EL' - End Load

'S2' - Slew to Channel 2

'S3' - Slew to Channel 3

'S4' - Slew to Channel 4

'S5' - Slew to Channel 5

'S6' -Slew to Channel 6

'S7' - Slew to Channel 7

'S8' - Slew to Channel 8

'VT' - Vertical Tab (Slew to Channel 6)

'FF' - Form Feed (Slew to Channel 1; defaults to 66 'LF's)

EXAMPLES

If the VFU is to be loaded with a channel 4 "punch" on line 5, a vertical tab on line 7, a channel 7 on line
12, and a total form length of 20, the following code is necessary:

10 OPEN (1) "LP"
20 PRINT (1) 'SL', "10004060000700000000", 'EL'

1. The string between the 'SL' and 'EL' can only contain numbers. These are translated into the
appropriate codes for the printer.

2. A zero is used as a fill character.

3. A six represents a vertical tab.

4. A one represents top of form. There should only be one per VFU load.

5. The length of the string corresponds to the number of lines on a page.

6. Only one channel can be designated per line position.

22
Copyright © 2009 Thoroughbred Software International, Inc.

DCHECK
PURPOSE

DCHECK is a stand-alone utility that is used to verify, and/or repair Thoroughbred MSORT and TISAM
file types.

DCHECK will:

1. List SRT definitions

2. List SRT indices

3. Check the validity of the SRT indices

4. Repair the file, if possible.

PROCEDURE

At your operating system prompt type:

dcheck [-options] file-name

and press the Enter key.

The current options are: b, d, e, h, i, k, l, n, o, q, x, y. These options are discussed below.

If no options are specified, then the header of the file is listed, and a consistency check is performed. If
the file is found to be corrupt, then the user is asked the following question:

rebuild index?

Y Erases all the indices and reapplies all the non-deleted data records into the rebuilding of new indices.

Note: Before selecting this option, make a backup of the corrupted file. DCHECK may not be able
to successfully repair the file.

N Returns to the operating system prompt without changing or repairing the file.

OPTIONS

b Build new index from data

This option rebuilds all of the indices for all of the SRTs that have been defined for this file. This is
accomplished by:

1. Removing all of the indices

2. Reorganizing the SRT definition blocks

23
Copyright © 2009 Thoroughbred Software International, Inc.

3. Rereading all of the non-deleted records from the data file, and reapplying them for the creating
of new indices

For example: for a file that was created with the "MSORT "foo", [1:3], 10, 10, Disk, 0" file, and
contained 10 records, the command:

dcheck -b foo

would return the following response:

DCHECK version 3.09g

isam file: foo

MSORT file type.

10 bytes/data record
1024 bytes/index block
1 keys:
 "0":[0: 1: 3: "A"]:"U"

rebuilding indexes for 10 records . . .
10 records
0 deleted
rewrite successful

d Lists deleted record numbers

This option lists the record numbers of all the deleted records. For example: If records 1, 4, and 8
were removed from the file "foo", then the command:

dcheck -d foo

would return the following response:

DCHECK version 3.09

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block
1 keys:
 "0":[0: 1: 3: "A"]:"U"
1
4
8

e extended check (index/data crosscheck)

24
Copyright © 2009 Thoroughbred Software International, Inc.

This option attempts to match the keys in the index blocks with the keys taken from the
corresponding data records. The command:

dcheck -e foo

would return the following response:

DCHECK version 3.09g

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block

1 keys:
 "0": [0: 1: 3: "A"]: "U" checking data file

checking index free space
checking data free space
checking index "0"
there are:
 7 active data records
 3 deleted data records
 2 active index records
 0 deleted index records

no errors detected

h displays header only

This option displays the 'Dictionary Node' and the 'Key Description' Node's. The command:

dcheck -h foo

would return the following response:

DCHECK version 3.09g

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block
1 keys:
 "0":[0: 1: 3: "A"]:"U"

i index only

This option checks only the index file for consistency. Refer to the e option for a more thorough test.
The command:

25
Copyright © 2009 Thoroughbred Software International, Inc.

dcheck -i foo would return the following response:

DCHECK version 3.09g

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block
1 keys:
 "0":[0: 1: 3: "A"]:"U"

checking index free space
checking data free space
checking index "0"
there are:
 7 active data records
 3 deleted data records
 2 active index records
 0 deleted index records no errors detected

k use exclusive lock

This option opens the file for non-sharable access, which prevents all other users from accessing or
changing the keys. The command:

dcheck -k foo

would return the following response:

DCHECK version 3.09g

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block
1keys:
 "0": [0: 1: 3: "A"]: "U"
checking data file
checking index free space
checking data free space
checking index "0"
there are:
 7 active data records
 3 deleted data records
 2 active index records
 0 deleted index records
no errors detected

l lists the index

26
Copyright © 2009 Thoroughbred Software International, Inc.

This option displays the indices and record pointers after an initial check of the index file. Any errors
that are found are also displayed as part of the report. The command:

dcheck -l foo would return the following response:

DCHECK version 3.09g

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block
1 keys:
 "0":[0: 1: 3: "A"]:"U"

checking data file
checking index free space
checking data free space

checking index "0"

n3 r2 l0 [002]
n3 r2 l0 [003]
n3 r5 l0 [005]
n3 r6 l0 [006]
n3 r7 l0 [007]
n3 r9 l0 [009]
n3 r10 l0 [010]

there are:
 7 active data record
 3 deleted data records
 2 active index records
 0 deleted index records no errors detected

Notes: The following abbreviations are used to provide information:

n is the node number. Example: n3 is node 3.

r is the record number. Example: r5 is record 5.

l is the index level. Example: l0 is index level 0.

n do not repair

This option does not attempt or prompt the user to repair a corrupted file if the file is found to be
corrupt during the consistency check. The command:

dcheck -n foo

would return the following response:

27
Copyright © 2009 Thoroughbred Software International, Inc.

DCHECK version 3.09g

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block
1 keys:
 "0":[0: 1: 3: "A"]:"U"

checking data files
checking index free space
checking data free space
checking index "0"

there are:
 7 active data records
 3 deleted data records
 2 active index records
 0 deleted index records

no errors detected

o Ordered list of data record numbers (by primary key)

This option prints a listing of all the record numbers in key order. The primary key determines the
order that the record numbers are listed. The command:

dcheck -o foo

would return the following response:

DCHECK version 3.09g

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block
1 keys:
 "0":[0: 1: 3: "A"]:"U"

2
3
5
6
7
9
10

q Quiet mode (no header)

28
Copyright © 2009 Thoroughbred Software International, Inc.

The command:

dcheck -q foo

returns no observable response, but a status byte is given back to the UNIX shell telling the status of
the file being checked.

x hex lists the index

This option prints a hex listing of the data records, as well as other B-Tree information pointing to the
record. Refer to the l option for more information. The command:

dcheck -x foo

would return the following response:

DCHECK version 3.09g

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block
1 keys:
 "0":[0: 1: 3: "A"]:"U"

checking data file
checking index free space
checking data free space

checking index "0"

n3 r2 10 [303032]
n3 r3 10 [303033]
n3 r5 10 [303035]
n3 r6 10 [303036]
n3 r7 10 [303037]
n3 r9 10 [303039]
n3 r10 10 [303130]

there are:
 7 active data records
 3 deleted data records
 2 active index records
 0 deleted index records

no errors detected

Notes: The following abbreviations are used to provide information:

n is the node number. Example: n3 is node 3.

29
Copyright © 2009 Thoroughbred Software International, Inc.

r is the record number. Example: r5 is record 5.

l is the index level. Example: l0 is index level 0.

y automatically repairs

This option automatically attempts to repair the file without further inquiries, but only when the file is
found to be corrupt. The command:

dcheck -y foo

would return the following response:

DCHECK version 3.09g

isam file: foo

MSORT File type.
10 bytes/data record
1024 bytes/index block
1 keys:
 "0":[0: 1: 3: "A"]:"U"
checking data file
checking index free space
checking data free space
checking index "0"
there are:
 7 active data records
 3 deleted data records
 2 active index records
 0 deleted index records

no errors detected

DCHECK ERRORS

Most errors are reported in the following format:

Fatal Error - ERROR MSG, Exiting (Error ERRNUM, line=LINENUM)

ERROR-MSG is the error message.

ERRNUM is the error number from either the operating system or the MSORT/TISAM driver.

LINENUM is the DCHECK.C source code line number where the error occurred. This number is
used to locate the source code that found and reported the error. This number can only be
used by Thoroughbred personnel.

30
Copyright © 2009 Thoroughbred Software International, Inc.

The error messages are as follows:

"Cannot determine file type from header"

A file was found, but DCHECK was unable to distinguish between the TISAM and MSORT
formats.

"Cannot open file for exclusive use (NOEXIST)"

This file cannot be found.

"Cannot open file for exclusive use. (LOCKED) "

The file was found, but was being used by someone else. The file cannot be repaired if other users
are processing it.

"Cannot read in # of index records used"

An attempt to read bytes 33, 34, 35, and 36 from the index file was made. The system refused to
return these 4 bytes probably because the file was empty.

"Cannot read in Audit block"

Although the pointer to the audit trail information was available, DCHECK was unable to read
the block containing the audit trail information.

"Cannot read in Key description block"

DCHECK was unable to read in the key description block, probably due to a truncated file.

"Cannot read in Key dictionary block"

The pointer to the key description nodes pointed to a block that cannot be read.

"Cannot read in Next key descriptor block"

The pointer to the next block of key data caused the system to return an error during the read
process.

"Cannot read in address of data free list"

An attempt was made to read bytes 25, 26, 27, and 28 from the index file was made. In most
cases, the index file has been corrupted or truncated.

"Cannot read in data from deleted list"

An attempt was made to read the data records from the data file matching the deleted record
numbers in the index data file. One of the data records resulted in a system read error.

31
Copyright © 2009 Thoroughbred Software International, Inc.

"Cannot read in dictionary node"

An attempt to read in the 'Dictionary Node' failed during the initial check of the file.

"Cannot reopen the Index file"

During the rebuild procedure, the index file was cleaned out and closed. During the attempt to
reopen the index file for exclusive use, an error occurred.

"Cannot rewrite # of records used in data file"

DCHECK was unable to write out bytes 33, 34, 35, and 36 of the index file, probably because the
file was protected from change.

"Cannot rewrite zeroed root node"

DCHECK was unable to rewrite a cleared Dictionary Node to the index file, probably because the
file was protected from change.

"Cannot write back Audit information"

The audit trail block could not be rewritten back to the file, probably because the file was
protected from change.

"Cannot write back Key dictionary block"

Although DCHECK was able to read in a Key Description block, DCHECK was unable to write
it back to the system, probably because the file was protected from change.

"Cannot write back Key descriptor block"

DCHECK was unable to write back the key description block, probably because the file was
protected from change.

"Failed to create a Blank index block"

During the rebuild process, an attempt was made to clear out all unused blocks within the index
file. A write failed to clear out a certain part of the file.

"Internal Error. Cache Open"

A DCHECK error has occurred. Call system support for further information.

"Internal Error. Cannot determine file type"

A file was found, but the check was unable to determine if it was in MSORT or TISAM format.

"Internal Error. Cannot read dictionary info"

During the rebuild procedure, the SRT information was determined to be inconsistent.

32
Copyright © 2009 Thoroughbred Software International, Inc.

"Internal Error. Connect"

A DCHECK error has occurred. Call system support for further information.

"Internal Error. Not a valid ISAM type"

A DCHECK error has occurred. Call system support for further information.

"NDXread"

A general DCHECK error has occurred. The system was unable to read from the INDEX file.

"NDXwrite"

A general DCHECK error has occurred. The system was unable to write to the INDEX file.

"iSKmake"

DCHECK was not able to form a valid key from the data record in the data file. The data in the
data file may have been corrupted.

"iSiread"

DCHECK was not able to read an INDEX block from the index file.

"isstart ISFIRST"

DCHECK was not able to position the file pointer to the first key in one of the SRTs.

"isstart ISNEXT"

DCHECK was not able to position the file pointer to the next key in one of the SRTs.

33
Copyright © 2009 Thoroughbred Software International, Inc.

ghoststat
PURPOSE

ghoststat is a stand-alone utility that is used to report and manage Thoroughbred Basic Ghost Tasks.

ghoststat will:

1. Report the status and usage of UNIX shared memory used by Ghost Tasks

2. Dump the contents of record transfer buffers

3. Reset the contents of shared memory and semaphores for one or more or all Ghost Tasks

4. Send an "ESCAPE" to one or more Ghost Tasks

PROCEDURE

ghoststat is run from a UNIX Shell prompt. You must have sufficient permission to perform functions on
shared memory owned by someone else. The syntax of the ghoststat command is:

ghoststat [-h] | [-d|-c|-e] | [-v][GhostName1[GhostName2…]]

The current options are: -d, -c, -e,–h, and -v. Only one option is allowed at a time. The options are
discussed below.

If one or more GhostName arguments are included on the command entry, information is presented only
for the Ghost Tasks specified. Otherwise information is presented for all currently configured Ghost
Tasks. The sixty-two valid GhostName combinations are "G0" through G9", "GA" through "GZ", and
"Ga" through "Gz". The actual number of configured Ghost Tasks on a system may be less.

Ghost Task status display

If no options are specified, ghoststat will display information about the status of configured Ghost Tasks.
The following is a sample display from ghoststat without options:

Thoroughbred BASIC Ghost Task Utility

 open cq cmd da tr err rel ctl st ocnt rac pid opid dsz rsz sf gs fs
G0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480

Total 'declared' Ghost Tasks: 8
Total START'ed Ghost Tasks: 0
Total OPEN Ghost Tasks: 0

34
Copyright © 2009 Thoroughbred Software International, Inc.

Entering the command ghoststat G2 G9 will produce this display:

Thoroughbred BASIC Ghost Task Utility

 open cq cmd da tr err rel ctl st ocnt rac pid opid dsz rsz sf gs fs
G2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480

–h Help Option

ghoststat -h will display descriptions for the columns in the status display:

ghoststat -h ------- example --------

Thoroughbred BASIC Ghost Task Utility

A short explanation of the flags printed out by this utlity:
Abreviation Full Name Explanation
----------- --------------- ---------------------------------
open ghopen ghost task opened flag
cq ghcmdqued a command_has_been_queued flag
cmd ghcmd current ghost I/O command
da ghdtav ghost data available flag
tr ghtran ghost data transfer in progress flag
err gherror error number (0 if none)
rel ghrelease RELEASE in progress
ctl ghctl CTL value passed from main to ghost
st ghstart START in progress
ocnt ghopcnt # ghost tasks this ghost has OPEN
rec ghrelack acknowledge that we are gonna die
pid ghpid process id of ghost task or 0 if not STARTed
opid ghopenpid process id of task that OPENed the ghost
dsz ghdatasz data size - # of bytes in buffer
rsz ghrecsz total size of record to transfer
sf ghsysflag TRUE if ghost has 'shelled down'
gs ghghoststep a code to say where we are in the
 ghost driver (ghost side)
fs ghfrgndstep a code to say where we are in the

 ghost driver (foreground side)

35
Copyright © 2009 Thoroughbred Software International, Inc.

–d Dump Buffers Option

The –d option will produce the Ghost Task status display followed by a dump of any record buffers
that contain data. The command ghoststat –d will produce a display similar to this:

Thoroughbred BASIC Ghost Task Utility

 open cq cmd da tr err rel ctl st ocnt rac pid opid dsz rsz sf gs fs
G0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 490 480
G1 0 1 2 1 0 0 0 0 0 0 0 16867 0 11 11 0 200 880
G2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
 open cq cmd da tr err rel ctl st ocnt rac pid opid dsz rsz sf gs fs
G8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480
G9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 480

data for G1: .LFREADY.LF

Total 'declared' Ghost Tasks: 10
Total START'ed Ghost Tasks: 1
Total OPEN Ghost Tasks: 0

The display shows that Ghost Task "G1" is active and its record buffer contains a “READY” prompt.
Specifying a GhostName as in the command ghoststat –d G1 will reduce the amount of information
displayed:

Thoroughbred BASIC Ghost Task Utility

 open cq cmd da tr err rel ctl st ocnt rac pid opid dsz rsz sf gs fs
G1 0 1 2 1 0 0 0 0 0 0 0 16867 0 11 11 0 200 880

data for G1: .LFREADY.LF

–c Clear Status Option

The –c option requests ghoststat to clear and reset values in shared memory. If the specified Ghost
Task process is still active the request will be refused with a message similar to:

Thoroughbred BASIC Ghost Task Utility
The process associated with Ghost Task "G1" is still alive
Ignoring request to clear "G1"

A successful request will produce a message similar to:

Thoroughbred BASIC Ghost Task Utility
"G1" memory cleared.

This option should only be used when a Ghost Task cannot be started because of the failure of a
previous Ghost Task.

-e Send ”ESCAPE” Option

The –e option will send a signal to a Ghost Task process requesting an “ESCAPE”. This action
is the same as pressing the ESC key while running a normal task. This option is usually used
prior to running the *GPSD utility to debug a Ghost Task program. A program can ignore an
”ESCAPE” regardless of the type of task.

36
Copyright © 2009 Thoroughbred Software International, Inc.

If ghoststat was able to signal the process successfully, a message similar to the following will be
displayed:

ESCAPE sent to Ghost Task "G0"

–v Display program version

The –v option will display the program version. The command ghoststat –v will produce a display
similar to this:

ghoststat -v ------- example --------

Thoroughbred BASIC Ghost Task Utility
 Thoroughbred BASIC Level 8.7.0 (11/16/09)
 Computer: INTEL 386/486
 OS Name/Level: Linux 2.4.20-6

ghoststat Errors and Messages

 The following messages are be produced by ghoststat:

Usage: ghoststat [-h] | [-d|-c|-e] [GhostName1[GhostName2...]]

There is an invalid option or GhostName. Only one option is allowed at a time. There must be a
space between the option and any arguments. GhostNames must begin with the letter ”G”.

Ghost Task "G?" is not valid for this version of BASIC.

 Either the second character of the GhostName specified is not valid or the installed version of
ghoststat supports less than 62 Ghost Tasks.

Unable to attach to shared memory.

 Either Thoroughbred Basic has not been started with Ghost Tasks defined in IPLINPUT or the
user does not have permission to perform UNIX shared memory functions.

Unable to attach to shared memory (Can't get ID).
BASIC has not been started with Ghost Tasks defined in the IPLINPUT file.

 None of the ghoststat functions will work until Thoroughbred Basic has been started with Ghost
Tasks defined in IPLINPUT.

Only NN Ghost Tasks configured in shared memory!

 A valid GhostName was used but the name has never been configured by Thoroughbred Basic in
IPLINPUT. Use ghoststat with no options to produce a status display of configured Ghost Tasks.

37
Copyright © 2009 Thoroughbred Software International, Inc.

”G?” is not declared.

A valid GhostName was used but the name has never been configured by Thoroughbred Basic in
IPLINPUT. Use ghoststat with no options to produce a status display of configured Ghost Tasks.

-e option requires at least one Ghost Task name.

 The –e option must be directed to one or more specific Ghost Tasks using GhostName arguments.
You may not send an ”ESCAPE” to all Ghost Tasks.

*** ESCAPE could not be sent to "G?"
*** Operating System returned error NN.

 While processing a ghoststat -e option, error NN was returned by the UNIX kill command.
Usually the user lacks sufficient UNIX permission to use the command. Refer to the UNIX
documentation for an explanation.

The process associated with Ghost Task ”G?” is still alive
Ignoring request to clear ”G?”

 This message is described under the –c option.

38
Copyright © 2009 Thoroughbred Software International, Inc.

Error Codes
Each error code and its accompanying message is followed by a description of the conditions that
generated the error.

-1 Directive or Function Not Available in this Version of BASIC

This release of Thoroughbred Basic or of your operating system does not support the directive or
function requested.

00 File or Record or Device Busy/Timeout Error

The program or task has attempted to:

1. Access a terminal device that is not ready, e.g., the power was off or the device was off-line.

2. DISABLE a disk on which there is an OPEN file.

3. ERASE an OPEN file (i.e., OPEN to the current task).

4. Access a disk record, which has been EXTRACTed by another task.

5. OPEN a file, which has been LOCKed by another task.

6. SAVE an ADDed program or ADDR'd program.

7. SAVE to an OPEN or LOCKed file. Access a file, which has been LOCKed by another task.

8. Communicate with a terminal with the TIM= option, where the specified time has elapsed.

9. Define a disk file on a logical disk previously DISABLEd by the same task.

01 End-of-Record

The program or task has attempted to:

1. READ a record having a missing field terminator.

2. READ more fields than the record contains.

3. WRITE a record longer than the defined record length.

4. Execute any I/O directive, which specifies more variables than the field terminator characters
received.

5. PRINT more characters than the defined line length (for a printer terminal).

02 End-of-File

The program or task has attempted to:

39
Copyright © 2009 Thoroughbred Software International, Inc.

1. Execute an I/O directive to an INDEXED or DIRECT file with the IND= option specified
greater than the defined file size.

2. WRITE to a DIRECT or SORT file more records than the defined file size.

3. Execute a sequential READ from a DIRECT or SORT file when the file pointer is at the
highest value key.

4. Reference the KEY or IND function when the file pointer is at the last record.

5. READ or WRITE beyond the last record of a file OPENed with the ISZ= option. (Note that
the END= option for an I/O directive provides a selective error branch for the ERROR=02
condition.)

03 Key Field Not Found

The program or task has attempted to perform a WRITE where one or more fields were missing
from the data to create a key.

07 File Corruption Detected

The program or task attempted to access a file that is unreadable due to corruption.

10 File ID Size or Key Usage

The program or task has attempted to specify a file-ID containing either 0 or more than 8
characters.

11 Missing or Duplicate Key

The program or task has attempted to READ from a DIRECT or SORT file using the KEY=
option when the specified key value does not exist for any record in the file (missing key).

Notes: The DOM= option provides a selective error branch for the missing key condition. In the
case of a missing key, the result is clear; reading a record that doesn't exist will produce
an ERROR 11, which can be handled by the DOM= option. However, the interaction
between the DOM= option and the duplicate key condition is slightly different.

In the case of a duplicate key condition, the result will depend upon whether or not the
programmer wants to write to a record that already exists. A WRITE to a DIRECT or
SORT file specifying a key value that already exists for a record in the file will overwrite
the record, unless the DOM= option is used, in which case program control will be
transferred to the statement specified by DOM=.

Note that if the DOM= branch is used for a duplicate key condition, the ERR variable
will be set to the value 11, but an actual error condition will not be produced. (Using the
DOM= option for a duplicate key is like setting an error flag and automatically handling
it in the same action.)

40
Copyright © 2009 Thoroughbred Software International, Inc.

12 Undefined or Duplicate File ID

The program or task has attempted to:

1. OPEN, ADD, DROP or ERASE a disk file or program file with a file-ID, which is not found
on an available disk. Either the file-ID is not defined or the file is located on a DISABLED
disk.

2. OPEN a terminal device, which has not been configured for the system.

3. Define a disk file with a file-ID, which already exists on an available disk.

4. Define a disk file or program using one of the reserved two-character device or task names,
(i.e., LP, P1 . . . P9, D1 . . . D9, SY, T0 . . . TF). (These names are reserved only if they
appear in the IPL file for the current task.)

5. RENAME a file to a name, which already exists, for a file on that logical disk.

13 File/Device Access

The program or task has attempted to:

1. Execute an input directive (INPUT, READ, EXTRACT, or FIND) from an output-only
terminal device such as a printer.

2. WRITE or PRINT to a DIRECT or SORT file where the record to be affected is not specified
by KEY= or by the record having been EXTRACTed by this task.

3. WRITE to a Serial file if it isn't locked.

4. DROP a program that is busy.

5. DROP any device.

14 File/Device Usage

The program or task has attempted to:

1. OPEN any file or terminal device on a channel number, which is currently OPENed by the
same task.

2. Execute an I/O directive with a channel number not currently OPENed by that task.

3. DISABLE or ENABLE a logical disk already DISABLEd or ENABLEd (respectively) for
the current task.

4. LOCK a file, which is not OPENed to the current task.

5. LOCK or UNLOCK a file already LOCKed or UNLOCKed (respectively) by the current
task.

41
Copyright © 2009 Thoroughbred Software International, Inc.

15 Out of Disk Space

The program or task has attempted to write to an MS-DOS or UNIX file on a device that is full.

16 Disk Directory Capacity

The program or task has attempted to:

1. Define a disk file when the disk directory is full.

2. OPEN a file when the task's File Control Table is full.

3. OPEN, RUN, ERASE or RENAME a file that causes an overflow in the UNIX or MS-DOS
file table (either the system limit or the process limit).

17 Invalid Parameter

The program or task has attempted to:

1. Reference a terminal device, task or logical disk number, which is not configured for the
system.

2. Execute a KEY= access to a file other than a DIRECT or SORT file.

3. Execute IOR, XOR or NOT directives with strings of unequal lengths.

4. SAVE, LOAD, RUN, or FIXUP a non-program file. LIST to or MERGE from a file other
than an INDEXED file.

5. ADDR a non-program file to the public directory.

18 Illegal Program Encryption Error

The program or task has attempted to:

1. Use LIST, EDIT, PGM, MERGE, SAVE or FIXUP on an encrypted program.

2. Bypass program security without using the correct password.

19 Program Format or Size

The program or task has attempted to:

1. LOAD a program from a PROGRAM file, which is empty.

2. LOAD a program whose internal name (in the disk file) does not match the PROGRAM file
name.

3. LOAD or RUN a program whose size exceeds the available User Task memory area.

4. CALL a program whose length exceeds the available User Task memory area.

42
Copyright © 2009 Thoroughbred Software International, Inc.

5. FIXUP a program created in Thoroughbred Basic prior to level 8.

6. Use CPP on a program-string containing statements with identical program line numbers or
statements without a program line number.

20 Statement Structure (Syntax)

The program or task has attempted to:

1. Enter or execute a program statement with incorrect or missing punctuation, symbols or
operators.

2. Enter or execute a program statement with non-existent or incorrectly spelled directives or
other syntax words.

3. Enter or execute a program statement with incorrect or illegal variable syntax.

4. Enter or execute a directive with illegal or conflicting options specified.

5. Execute an EDIT directive with illegal parameters or syntax.

6. Reference a hexadecimal data element with incorrect or illegal syntax; i.e., the syntax must:

• Contain an even number of characters.

• Contain only numeric characters 0-9 and alphabetic characters A-F.

• Be enclosed in dollar signs ($. . . $) unless used in a TABLE statement.

7. Execute an I/O directive using the KEY function.

21 Statement Number Error

The program or task has attempted to:

1. Reference a statement number, which is not a positive integer between 1 and 65534. For
i8086-based systems, the range is 1 to 9999.

2. Reference a label name that has not been declared, or declare a duplicate label name.

3. Execute an EDIT or DELETE directive on a non-existent statement number.

4. MERGE a file containing an invalid statement number or an end-of-file.

5. MERGE an INDEXED file containing a program with no END statement.

6. Use CPP on a program-string containing an undeclared label or a duplicate label.

22 Uninitialized Variable

The program or task has attempted to reference a variable to which a value has not been assigned.

43
Copyright © 2009 Thoroughbred Software International, Inc.

24 Function Name Definition

The program or task has attempted to define a programmable function DEF FNx or DEF FNx$
with the same identification character (x) as another programmable function existing in the same
task.

25 Undefined Function

The program or task has attempted to reference a programmable function DEF FNx or DEF FNx$
which has not been defined within the current task.

26 Variable Usage

The program or task has attempted to:

1. Specify a non-numeric character in a numeric data element. (Note that the
converseCspecifying a numeric in a string data elementCis not an error since a numeric
character is a string character also by definition.)

2. Enter or execute a directive or function with a variable name of the wrong type (numeric or
string).

27 RETURN Without GOSUB

The program or task has attempted to:

1. Execute a RETURN directive without an active GOSUB or SETESC directive.

2. Execute an EXITTO directive without an active GOSUB or FOR directive.

3. Execute a RETRY directive without an active SETERR or ERR= directive.

4. Execute an EXIT directive from a program, which is not a Public Program.

5. EDIT or DELETE a statement which contains an active GOSUB, FOR, SETERR, or ERR=
directive.

28 NEXT Without FOR

The program or task has attempted to execute a NEXT directive without an active FOR directive.

29 Undefined Mnemonic Constant

The program or task has attempted to:

1. Execute an I/O directive with a mnemonic constant, which is undefined or illegal for the
referenced device.

2. Execute an I/O directive with a data positioning modifier, which is undefined or illegal for
the referenced device.

44
Copyright © 2009 Thoroughbred Software International, Inc.

3. Specify an escape code ($1B$) (not followed by a valid mnemonic or positioning specifier) in
a data element to a terminal device or printer.

30 Program Checksum Error

The program or task has attempted to LOAD, RUN, LIST or execute the LST or the CPP function
on an invalid string.

31 Internal Stack Overflow

The program or task has attempted to execute a program, which overflows the internal stack.

32 Record Too Large for Buffer

The program or task has attempted to execute an I/O directive with a record size larger than the
available buffer memory area.

33 Memory Capacity

The program or task has attempted to:

1. EDIT or MERGE a statement(s) into the current program whose length causes an over-flow
of the user task memory area.

2. Execute a program, which exceeds the user task memory area (usually too many or too long
string variables).

3. Use CPP with insufficient data space as set by the PTN parameters in the IPLINPUT file.

34 FOR/NEXT GOSUB/RETURN Stack Overflow

The program or task has attempted to execute a FOR/NEXT or GOSUB/RETURN directive
which overflows the internal stack.

35 LISTer Stack Overflow

The program or task has attempted to execute a procedure, which overflows the LISTer stack.

36 CALL/ENTER Mismatch

The program or task has attempted to:

1. Execute an ENTER directive in a public program with a variable list which does not match
(either in number or type of variables) the variable list of the CALL directive which CALLed
the program.

2. Execute an ENTER directive more than once in a public program.

3. Execute an ENTER directive in a non-public program.

45
Copyright © 2009 Thoroughbred Software International, Inc.

37 Structure/Locate Table Overflow

The program or task has attempted to

1. INCLUDE a format after the format structure table has reached capacity.

2. OPEN a link after the link structure table has reached capacity.

38 Illegal Command in a Public Program

The program or task has attempted to execute an EXECUTE, LIST, RUN, DELETE, SAVE, or
MERGE directive in a Public Program.

39 Escape in a Public Program

The program or task has attempted to:

1. Execute an ESCAPE directive in a public program.

2. Execute an Escape key on the Task VDT during execution of a public program.

40 Numeric Value Overflow

The program or task has attempted to:

1. Execute an arithmetic operation resulting in a numeric element outside the range of maximum
and minimum values (numbers are limited to a maximum of 128 places):+/-
.99999999999999E+141 to +/-.00000000000001E-114.

2. Assign the result of a BIN function to a string data element, which is not long enough.

3. Execute an arithmetic operation that specifies division by zero.

41 Integer Range

The program or task has attempted to:

1. Reference an I/O channel with an integer outside the range 0 to 14, or 0 to 9 for Z8000-based
systems.

2. Reference a logical disk number with an integer outside the range 0 to 35.

3. Reference a file size (number of records) or an INDex (record number) with an integer
outside the range 1 to (2^23)-1.

4. Reference a record size (number of bytes) with an integer outside the range 1 to 32767 (4 to
32767 for DIRECT files).

5. Reference a Data Positioning parameter with an integer outside the range 0 to 255.

46
Copyright © 2009 Thoroughbred Software International, Inc.

6. Reference a string subscript in a DIM directive or a substring with an integer outside the
range 1 to 32767.

7. Reference a subscript of a numeric array in a DIM directive or variable reference with an
integer outside the range 0 to 4094.

8. Define a program size (number of bytes) with an integer outside the range 20 to 5,242,880
(5*1024*1024).

9. Execute a PRECISION directive with an integer outside the range 0 to 14, or 127.

10. Execute an ON GOTO directive where n is an integer greater than 65535.

11. Reference an exponential operation (raising to a power) where the exponent is an integer
greater than 32767.

12. Define the KEY field length of a DIRECT or SORT file with an integer outside the valid
range.

For most systems: 2 to 144.

For some systems: 4 to 56 when less than 32768 records in file; 4 to 54 when more than
32768 records in file.

13. Reference a step-value in a POS function with an integer outside the range 1 to 32767.

14. Reference a CHR function with an integer argument outside the range 0 to 255.

15. Specify a non-integer for an integer-only numeric data element or parameter.

42 Nonexistent Subscript

The program or task has attempted to:

1. Reference an element of a numeric array, which has not been DIMensioned.

2. Reference an element of a numeric array with a subscript(s) outside the DIMension limits.

43 Numeric Format Mask Overflow

The program or task has attempted to use a numeric format that overflows the stack.

44 Step Size Zero

The program has attempted to execute a FOR/NEXT directive with a STEP size of 0.

45 Statement Usage

The program or task has attempted to:

47
Copyright © 2009 Thoroughbred Software International, Inc.

1. Enter a Thoroughbred Basic Console Mode only statement with a statement number
(indicating Thoroughbred Basic Run Mode usage).

2. Execute a Thoroughbred Basic Run Mode only statement in Thoroughbred Basic Console
Mode.

3. Enter or execute a LIST or DELETE directive with a starting statement number specified
greater than the ending statement number.

4. Reference an undeclared label name in LIST or DELETE.

5. Execute an I/O directive with an IOL= option referencing a statement which is not an
IOLIST.

6. Execute an I/O directive with a TBL= option referencing a statement which is not a TABLE.

46 String Size

The program or task has attempted to:

1. Execute an I/O directive with a KEY= option where the specified KEY is longer than the
defined KEY length for the file.

2. Execute a SETDAY directive with a string argument greater or less than 8 characters long.

3. Execute an ASC Function with the null string ("") specified as the argument.

47 Invalid Substring Reference

The program or task has attempted to reference a substring character position beyond the length
of the specified string.

48 Input Verification

The program or task has attempted to:

1. INPUT a numeric data element outside the VERIFICATION limits specified in the INPUT
directive.

2. INPUT a string data element which does not match a string constant specified for
VERIFICATION branching (if specified) and whose length does not fall within the LEN=
limits specified in the INPUT directive.

49 Global Variable Error

The program or task has attempted to retrieve or delete a nonexistent or invalid global variable
name.

50 Cannot Remove Primary Sort

The program or task has attempted to REMSORT the primary key of an MSORT file.

48
Copyright © 2009 Thoroughbred Software International, Inc.

51 Cannot Have More Than 16 Sorts for an MSORT File

The program or task has attempted to use more than 16 sorts in an MSORT file.

52 Cannot Have More Than 16 Sorts for a TISAM File

The program or task has attempted to use more than 16 sorts in a TISAM file.

53 Too Many Segment Definitions

The program or task has exceeded the limit of 16 segment definitions in an MSORT file or 8 in a
TISAM file.

54 Primary Key Must Be Unique

The program or task has attempted to define a primary key that is not unique (does not specify
"U", or "u").

55 Sort Name Too Long

The program or task has attempted to use a sort name of more than 20 characters.

56 Field Number Greater Than 255

The program or task has attempted to define a field in excess of the 255 permitted.

57 Undefined Mode

The program or task has attempted to define a mode with an initial character, and that character is
neither "U", "u", "D", nor "d".

58 Field Does Not Exist

The program or task cannot find a field delimiter ($8A$) for one of the defined sort definitions in
an MSORT file.

60 Transaction Log File Not Open

The program has attempted to execute a TRANSACTION BEGIN directive without a LOG
OPEN directive.

61 Transaction in Progress

The program has attempted to execute a directive (or function) that is not allowed in between a
transaction start, and the commitment of the transaction.

62 Transaction Not Started

The program has attempted to execute a COMMIT or a ROLLBACK directive without a
TRANSACTION BEGIN directive.

49
Copyright © 2009 Thoroughbred Software International, Inc.

63 Transaction Log Already Open

The program has attempted to execute a LOG OPEN when a LOG is currently OPEN already.

64 Channel Not Open For Transaction Modification

The program has attempted to WRITE to a channel that is not OPEN for Transaction Processing.

65 Transaction "IN PROGRESS" File Exists

The entry in the "/usr/lib/Basic/MasterLog/" file has not been properly cleared by a LOG CLOSE
or equivalent directive such as RELEASE. This error can only be corrected by changing (or
erasing) the contents of the appropriate Task ID slot in the MasterLog File.

70 Windows Terminal Driver Was Not Selected When This Task Started

This program or task has attempted to execute a window command without first invoking the
Thoroughbred Basic Windows terminal driver.

71 Windows Error: Too Many Active Windows or Panels

This program or task has attempted to open a Thoroughbred Basic Window that would exceed the
number of Thoroughbred Basic Windows allowed at one time.

72 Windows Error: Attempt to Delete or Save the Main Window

The base Thoroughbred Basic Window, 0, cannot be deleted.

73 Windows Error: Illegal Value in Attribute Map or String

The program or task has attempted to reference an invalid attribute setting. Refer to the command
syntax in the Thoroughbred Basic Language Reference for a listing of the valid attributes.

74 Windows Error: The Windows System is Disabled

This program or task has attempted to execute a window command without first invoking the
Thoroughbred Basic Windows terminal driver.

75 Windows Error: Illegal Length or Value for Window Name

A Thoroughbred Basic Window Name greater than 8 characters has been entered or invalid
characters have been used in the name.

76 Windows Error: Illegal String Parameter Length

The string parameter length specified exceeds the maximum value allowed. Refer to the
command syntax in the Thoroughbred Basic Language Reference for more information.

50
Copyright © 2009 Thoroughbred Software International, Inc.

77 Windows Error: Illegal Numeric Parameter Value

The numeric value entered exceeds the maximum value allowed. Refer to the command syntax in
the Thoroughbred Basic Language Reference for more information.

78 Windows Error: Wrong Format or Length for Command Option

The format/length specified for the Thoroughbred Basic Window command is invalid. Refer to
the command syntax in the Thoroughbred Basic Language Reference for more information.

79 Windows Error: Illegal Window Command Option Keyword

The command option keyword specified is invalid. Refer to the command syntax in the
Thoroughbred Basic Language Reference for more information.

80 Windows Error: Attempt to Use the Same Optional Parameter Twice

Each parameter can only be used once in a command.

81 Windows Error: Non-keyword= Option Used as Keyword= Option

The keyword= option specified is invalid. Refer to the command syntax in the Thoroughbred
Basic Language Reference for more information.

82 Windows Error: Illegal Window Command Option Keyword Value

The command option keyword specified is invalid. Refer to the command syntax in the
Thoroughbred Basic Language Reference for more information.

83 Windows Error: Border Character Must Be a Printable Character

The Border Character specified is invalid. Refer to the command syntax in the Thoroughbred
Basic Language Reference for more information.

84 Windows Error: Illegal Format or Value for Border Attribute

The attribute format has not been specified OR is invalid. Refer to the command syntax in the
Thoroughbred Basic Language Reference for more information.

85 Windows Error: Illegal Window Command Option Keyword Value

The value specified is invalid. Refer to the command syntax in the Thoroughbred Basic Language
Reference for more information.

86 Windows Error: Illegal Window Command Option for This Command

The command option specified is not valid for this command. Refer to the command syntax in the
Thoroughbred Basic Language Reference for more information.

51
Copyright © 2009 Thoroughbred Software International, Inc.

87 Windows Error: New Window or I/O Region Will Not Fit

The Thoroughbred Basic Window or box specified exceeds the screen size or the I/O region
specified exceeds the window size.

88 Windows Error: Undefined or Duplicate Window Name

The Thoroughbred Basic Window Name specified has not been defined or, if defining a new
Thoroughbred Basic Window, a Thoroughbred Basic Window has already been defined with that
name.

89 Windows Error: Wrong Format for Window Contents Map(s)

The format specified for the Thoroughbred Basic Window contents map is invalid. Refer to the
command syntax in the Thoroughbred Basic Language Reference for more information.

90 Windows Error: Map Length Wrong for this Window or I/O Region

The map length specified is invalid. Refer to the command syntax in the Thoroughbred Basic
Language Reference for more information.

91 Windows Error: Illegal Map Type

The map type specified is invalid. Refer to the command syntax in the Thoroughbred Basic
Language Reference for more information.

92 Windows Error: Unprintable Character in Text Map or String

Unprintable characters are not allowed in text maps or strings.

93 Windows Error: I/O Region Column and/or Row Count is Zero

The column and/or row count specified is invalid. Refer to the command syntax in the
Thoroughbred Basic Language Reference for more information.

94 Windows Error: Illegal Coordinate and/or Length for Get/Put Command

The coordinate and/or length specified is invalid. Refer to the command syntax in the
Thoroughbred Basic Language Reference for more information.

95 Windows Error: Cannot Change a Function Key that Does Not Exist

The function key that has been specified is invalid. Refer to your terminal table for a listing of
acceptable function keys.

103 Unexpected Operating System Error

The program or task has attempted to perform some operation, or some condition has occurred
which is not covered by the above error processing codes and which may be unique to a particular
operating system.

52
Copyright © 2009 Thoroughbred Software International, Inc.

127 [No Message; Not an Error]

When Escape is pressed, ERR is set to 127, but no error condition is generated.

160 Program Contains Invalid Format/Data Name References

The program or task has attempted to SAVE or FIXUP a program containing format/data name
references.

161 Undefined Format Name

The program or task has attempted to:

1. INCLUDE a format that does not exist in the data dictionary

2. Reference a format/data name except for DEFAULT, DELETE, and INIT directives, that has
not been INCLUDEd.

162 Format Name Has Not Been INCLUDEd

The FORMAT DEFAULT, DELETE, or INIT references a format that has not been INCLUDEd
by the current program.

163 Undefined Data Name

The program or task has attempted to reference a data name that does not exist in the format's
data element table.

164 Data Name Does Not Allow Multiple Occurrences

The program or task has attempted to reference a data name with an occurrence that was defined
to be a single occurrence.

165 Invalid Occurrence

The program or task has attempted to:

1. Reference a data name without an occurrence that was defined to have multiple occurrences

2. Reference a data name with an occurrence that is not in the range of defined occurrences.

166 String/Numeric Mismatch of Data Name

The program or task has attempted to assign an alphanumeric value to a data name that was
defined to be numeric.

167 Invalid Value For Data Name

The program or task has attempted to:

53
Copyright © 2009 Thoroughbred Software International, Inc.

1. Assign a value to a data name that does not meet its defined attributes (i.e., date type, numeric
type, input type, ...).

2. FINPUT a data name that does not meet its defined attributes (i.e., date type, numeric type,
input type, ...).

168 Undefined Data Dictionary

The program or task has attempted to INCLUDE a format without access to a data dictionary.

169 Format Corruption Detected

The program or task has attempted to INCLUDE:

1. A format where only the format header record exists within the data dictionary.

2. A format that contains a corrupt data element, one with an invalid combination of fixed
attributes.

170 Format Cannot Be DELETEd (OPEN LINK)

The program or task has attempted to DELETE a format that was softly INCLUDEd (i.e.,
INCLUDEd by an OPEN, OPT="LINK").

171 Undefined Link Name

The program or task has attempted to OPEN a link that does not exist in the data dictionary.

172 Cannot Process a Format/Data Name in the IOLIST of an OPEN LINK

The program or task has attempted to reference a format or data name in the IOLIST of a channel
that was OPENed with OPT="LINK".

	ASCII Code Chart
	External Call (XCALL) Technical Specifications
	How to set up and initialize your system
	How to use the XCALL directive
	How to manage return values
	Examples

	VFU Loading
	DCHECK
	ghoststat
	Error Codes

